↓ Skip to main content

Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
49 Mendeley
Title
Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models
Published in
Journal of Experimental & Clinical Cancer Research, July 2018
DOI 10.1186/s13046-018-0820-5
Pubmed ID
Authors

Anais Del Curatolo, Fabiana Conciatori, Ursula Cesta Incani, Chiara Bazzichetto, Italia Falcone, Vincenzo Corbo, Sabrina D’Agosto, Adriana Eramo, Giovanni Sette, Isabella Sperduti, Teresa De Luca, Mirko Marabese, Senji Shirasawa, Ruggero De Maria, Aldo Scarpa, Massimo Broggini, Donatella Del Bufalo, Francesco Cognetti, Michele Milella, Ludovica Ciuffreda

Abstract

Mounting evidence suggests that RAF-mediated MEK activation plays a crucial role in paradox MAPK (re)activation, leading to resistance and therapeutic failure with agents hitting a single step along the MAPK cascade. We examined the molecular and functional effects of single and combined BRAF (dabrafenib), pan-RAF (RAF265), MEK (trametinib) and EGFR/HER2 (lapatinib) inhibition, using Western Blot and conservative isobologram analysis to assess functional synergism, and explored genetic determinants of synergistic interactions. Immunoprecipitation based assays were used to detect the interaction between BRAF and CRAF. The Mann-Whitney U test was used for comparing quantitative variables. Here we demonstrated that a combination of MEK and BRAF inhibitors overcomes paradoxical MAPK activation (induced by BRAF inhibitors) in BRAF-wt/RAS-mut NSCLC and PDAC in vitro. This results in growth inhibitory synergism, both in vitro and in vivo, in the majority (65%) of the cellular models analyzed, encompassing cell lines and patient-derived cancer stem cells and organoids. However, RAS mutational status is not the sole determinant of functional synergism between RAF and MEK inhibitors, as demonstrated in KRAS isogenic tumor cell line models. Moreover, in EGFR-driven contexts, paradoxical MAPK (re)activation in response to selective BRAF inhibition was dependent on EGFR family signaling and could be offset by simultaneous EGFR/HER-2 blockade. Overall, our data indicate that RAF inhibition-induced paradoxical MAPK activation could be exploited for therapeutic purposes by simultaneously targeting both RAF and MEK (and potentially EGFR family members) in appropriate molecular contexts. KRAS mutation per se does not effectively predict therapeutic synergism and other biomarkers need to be developed to identify patients potentially deriving benefit from combined BRAF/MEK targeting.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 31%
Student > Ph. D. Student 8 16%
Student > Bachelor 7 14%
Student > Master 6 12%
Other 1 2%
Other 3 6%
Unknown 9 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 27%
Medicine and Dentistry 9 18%
Pharmacology, Toxicology and Pharmaceutical Science 7 14%
Nursing and Health Professions 2 4%
Agricultural and Biological Sciences 2 4%
Other 4 8%
Unknown 12 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2018.
All research outputs
#22,767,715
of 25,385,509 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#1,970
of 2,382 outputs
Outputs of similar age
#297,902
of 339,673 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#51
of 65 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,382 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,673 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.