↓ Skip to main content

Localization, Occurrence, and CSF Changes of SP-G, a New Surface Active Protein with Assumable Immunoregulatory Functions in the CNS

Overview of attention for article published in Molecular Neurobiology, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
18 Mendeley
Title
Localization, Occurrence, and CSF Changes of SP-G, a New Surface Active Protein with Assumable Immunoregulatory Functions in the CNS
Published in
Molecular Neurobiology, July 2018
DOI 10.1007/s12035-018-1247-x
Pubmed ID
Authors

Matthias Krause, Nicole Peukert, Wolfgang Härtig, Alexander Emmer, Cynthia Vanessa Mahr, Cindy Richter, Julia Dieckow, Joana Puchta, Mandy Pirlich, Karl-Titus Hoffmann, Ulf Nestler, Stefan Schob

Abstract

Conventional surfactant proteins (A, B, C, and D) are important players of the innate immunity in the central nervous system and serve as effective regulators of cerebrospinal fluid rheology, probably being involved in clearance of detrimental metabolites like beta-amyloid and phospho-tau. Recently, a novel surfactant protein, SP-G, was described in kidneys and peripheral endocrine and exocrine glands. So far, its presence and possible functions in the central nervous system are unknown. Therefore, our study aimed to elucidate the presence of SP-G in the brain and its concentration in normal and pathologic samples of cerebrospinal fluid in order to gain first insight into its regulation and possible functions. A total of 121 samples of human cerebrospinal fluid (30 controls, 60 hydrocephalus patients, 7 central nervous system infections, and 24 brain hemorrhage patients) and 21 rat brains were included in our study. CSF samples were quantified using a commercially available ELISA system. Results were analyzed statistically using SPSS 22, performing Spearman Rho correlation and ANOVA with Dunnett's post hoc analysis. Rat brains were investigated via immunofluorescence to determine SP-G presence and colocalization with common markers like aquaporin-4, glial fibrillary acidic protein, platelet endothelial adhesion molecule 1, and neuronal nuclear antigen. SP-G occurs associated with brain vessels, comparable to other conventional SPs, and is present in a set of cortical neurons. SP-G is furthermore actively produced by ependymal and choroid plexus epithelium and secreted into the cerebrospinal fluid. Its concentrations are low in control subjects and patients suffering from aqueductal stenosis, higher in normal pressure hydrocephalus (p < 0.01), and highest in infections of the central nervous system and brain hemorrhage (p < 0.001). Interestingly, SP-G did correlate with total CSF protein in patients with CNS infections and hemorrhage, but not with cell count. Based on the changes in CSF levels of SP-G in hydrocephalus, brain hemorrhage, and CNS infections as well as its abundance at CSF flow-related anatomical structures closely associated with immunological barrier systems, importance for CSF rheology, brain waste clearance, and host defense is assumable. Thus, SP-G is a potential new CSF biomarker, possibly not only reflecting aspects of CNS innate immune responses, but also rheo-dynamically relevant changes of CSF composition, associated with CSF malabsorbtion. However, further studies are warranted to validate our findings and increase insight into the physiological importance of SP-G in the CNS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 22%
Student > Bachelor 3 17%
Other 1 6%
Student > Ph. D. Student 1 6%
Professor 1 6%
Other 2 11%
Unknown 6 33%
Readers by discipline Count As %
Neuroscience 4 22%
Medicine and Dentistry 4 22%
Biochemistry, Genetics and Molecular Biology 1 6%
Arts and Humanities 1 6%
Agricultural and Biological Sciences 1 6%
Other 0 0%
Unknown 7 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2019.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from Molecular Neurobiology
#2,828
of 3,498 outputs
Outputs of similar age
#287,572
of 329,030 outputs
Outputs of similar age from Molecular Neurobiology
#124
of 147 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,498 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,030 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 147 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.