↓ Skip to main content

Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis

Overview of attention for article published in Plant Cell Reports, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
7 Mendeley
Title
Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis
Published in
Plant Cell Reports, July 2018
DOI 10.1007/s00299-018-2324-3
Pubmed ID
Authors

Yunjian Xu, Fang Liu, Suwen Zhu, Xiaoyu Li

Abstract

Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 71%
Student > Doctoral Student 1 14%
Unknown 1 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 43%
Biochemistry, Genetics and Molecular Biology 2 29%
Arts and Humanities 1 14%
Unknown 1 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2020.
All research outputs
#5,637,831
of 23,577,654 outputs
Outputs from Plant Cell Reports
#522
of 2,232 outputs
Outputs of similar age
#93,855
of 330,796 outputs
Outputs of similar age from Plant Cell Reports
#9
of 33 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,232 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,796 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.