↓ Skip to main content

An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth

Overview of attention for article published in Journal of Biological Chemistry, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth
Published in
Journal of Biological Chemistry, July 2018
DOI 10.1074/jbc.ra118.003907
Pubmed ID
Authors

Lingxiao Tan, Kwang-Jin Cho, Pratik Neupane, Robert J Capon, John F Hancock

Abstract

Oncogenic RAS proteins are commonly expressed in human cancer. To be functional, RAS proteins must undergo post-translational modification and localize to the plasma membrane (PM). Therefore, compounds that prevent RAS PM targeting have potential as putative RAS inhibitors. Here we examine the mechanism of action of oxanthroquinone G01 (G01), a recently described inhibitor of KRAS PM localization. We show that G01 mislocalizes HRAS and KRAS from the PM with similar potency and disrupts the spatial organization of RAS proteins remaining on the PM. G01 also inhibited recycling of epidermal growth factor receptor and transferrin receptor, but did not impair internalization of cholera toxin, indicating suppression of recycling endosome function. In searching for the mechanism of impaired endosomal recycling we observed that G01 also enhanced cellular sphingomyelin (SM) and ceramide levels and disrupted the localization of several lipid and cholesterol reporters, suggesting that the G01 molecular target may involve SM metabolism. Indeed, G01 exhibited potent synergy with other compounds that target SM metabolism in KRAS localization assays. Furthermore, G01 significantly abrogated RAS-RAF-MAPK signaling in MDCK cells expressing constitutively activated, oncogenic mutant RASG12V. G01 also inhibited the proliferation of RAS-less mouse embryo fibroblasts (MEFs) expressing oncogenic mutant KRASG12V or KRASG12D but not RAS-less MEFs expressing oncogenic mutant BRAFV600E. Consistent with these effects, G01 selectively inhibited the proliferation of KRAS-transformed pancreatic, colon, and endometrial cancer cells. Taken together, these results suggest that G01 should undergo further evaluation as a potential anti-RAS therapeutic.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Other 3 12%
Student > Bachelor 3 12%
Student > Ph. D. Student 3 12%
Professor 2 8%
Other 2 8%
Unknown 7 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 27%
Medicine and Dentistry 5 19%
Chemistry 2 8%
Decision Sciences 1 4%
Arts and Humanities 1 4%
Other 2 8%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2018.
All research outputs
#14,605,790
of 25,385,509 outputs
Outputs from Journal of Biological Chemistry
#72,570
of 85,256 outputs
Outputs of similar age
#171,234
of 341,301 outputs
Outputs of similar age from Journal of Biological Chemistry
#208
of 353 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 85,256 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,301 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 353 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.