↓ Skip to main content

Epithelial‐Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk

Overview of attention for article published in Genetic Epidemiology, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
62 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Epithelial‐Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk
Published in
Genetic Epidemiology, September 2015
DOI 10.1002/gepi.21921
Pubmed ID
Authors

Ernest K. Amankwah, Hui‐Yi Lin, Jonathan P. Tyrer, Kate Lawrenson, Joe Dennis, Ganna Chornokur, Katja K. H. Aben, Hoda Anton‐Culver, Natalia Antonenkova, Fiona Bruinsma, Elisa V. Bandera, Yukie T. Bean, Matthias W. Beckmann, Maria Bisogna, Line Bjorge, Natalia Bogdanova, Louise A. Brinton, Angela Brooks‐Wilson, Clareann H. Bunker, Ralf Butzow, Ian G. Campbell, Karen Carty, Zhihua Chen, Y. Ann Chen, Jenny Chang‐Claude, Linda S. Cook, Daniel W. Cramer, Julie M. Cunningham, Cezary Cybulski, Agnieszka Dansonka‐Mieszkowska, Andreas du Bois, Evelyn Despierre, Ed Dicks, Jennifer A. Doherty, Thilo Dörk, Matthias Dürst, Douglas F. Easton, Diana M. Eccles, Robert P. Edwards, Arif B. Ekici, Peter A. Fasching, Brooke L. Fridley, Yu‐Tang Gao, Aleksandra Gentry‐Maharaj, Graham G. Giles, Rosalind Glasspool, Marc T. Goodman, Jacek Gronwald, Patricia Harrington, Philipp Harter, Hanis N. Hasmad, Alexander Hein, Florian Heitz, Michelle A. T. Hildebrandt, Peter Hillemanns, Claus K. Hogdall, Estrid Hogdall, Satoyo Hosono, Edwin S. Iversen, Anna Jakubowska, Allan Jensen, Bu‐Tian Ji, Beth Y. Karlan, Heather Jim, Melissa Kellar, Lambertus A. Kiemeney, Camilla Krakstad, Susanne K. Kjaer, Jolanta Kupryjanczyk, Diether Lambrechts, Sandrina Lambrechts, Nhu D. Le, Alice W. Lee, Shashi Lele, Arto Leminen, Jenny Lester, Douglas A. Levine, Dong Liang, Boon Kiong Lim, Jolanta Lissowska, Karen Lu, Jan Lubinski, Lene Lundvall, Leon F. A. G. Massuger, Keitaro Matsuo, Valerie McGuire, John R. McLaughlin, Ian McNeish, Usha Menon, Roger L. Milne, Francesmary Modugno, Kirsten B. Moysich, Roberta B. Ness, Heli Nevanlinna, Ursula Eilber, Kunle Odunsi, Sara H. Olson, Irene Orlow, Sandra Orsulic, Rachel Palmieri Weber, James Paul, Celeste L. Pearce, Tanja Pejovic, Liisa M. Pelttari, Jennifer Permuth‐Wey, Malcolm C. Pike, Elizabeth M. Poole, Harvey A. Risch, Barry Rosen, Mary Anne Rossing, Joseph H. Rothstein, Anja Rudolph, Ingo B. Runnebaum, Iwona K. Rzepecka, Helga B. Salvesen, Eva Schernhammer, Ira Schwaab, Xiao‐Ou Shu, Yurii B. Shvetsov, Nadeem Siddiqui, Weiva Sieh, Honglin Song, Melissa C. Southey, Beata Spiewankiewicz, Lara Sucheston‐Campbell, Soo‐Hwang Teo, Kathryn L. Terry, Pamela J. Thompson, Lotte Thomsen, Ingvild L. Tangen, Shelley S. Tworoger, Anne M. van Altena, Robert A. Vierkant, Ignace Vergote, Christine S. Walsh, Shan Wang‐Gohrke, Nicolas Wentzensen, Alice S. Whittemore, Kristine G. Wicklund, Lynne R. Wilkens, Anna H. Wu, Xifeng Wu, Yin‐Ling Woo, Hannah Yang, Wei Zheng, Argyrios Ziogas, Linda E. Kelemen, Andrew Berchuck, Georgia Chenevix‐Trench on behalf of the AOCS management group, Joellen M. Schildkraut, Susan J. Ramus, Ellen L. Goode, Alvaro N. A. Monteiro, Simon A. Gayther, Steven A. Narod, Paul D. P. Pharoah, Thomas A. Sellers, Catherine M. Phelan

Abstract

Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Finland 1 2%
Spain 1 2%
Unknown 60 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 23%
Professor 9 15%
Student > Ph. D. Student 6 10%
Other 4 6%
Librarian 3 5%
Other 9 15%
Unknown 17 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 23%
Medicine and Dentistry 12 19%
Social Sciences 3 5%
Agricultural and Biological Sciences 2 3%
Immunology and Microbiology 2 3%
Other 8 13%
Unknown 21 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2015.
All research outputs
#14,644,315
of 24,558,777 outputs
Outputs from Genetic Epidemiology
#439
of 827 outputs
Outputs of similar age
#135,377
of 279,939 outputs
Outputs of similar age from Genetic Epidemiology
#2
of 10 outputs
Altmetric has tracked 24,558,777 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 827 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,939 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 8 of them.