↓ Skip to main content

Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing.

Overview of attention for article published in Frontiers in Plant Science, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing.
Published in
Frontiers in Plant Science, September 2015
DOI 10.3389/fpls.2015.00778
Pubmed ID
Authors

Zeng, Shaohua, Liu, Yongliang, Pan, Lizhu, Hayward, Alice, Wang, Ying

Abstract

MicroRNAs (miRNAs) are master regulators of gene activity documented to play central roles in fruit ripening in model plant species, yet little is known of their roles in Lycium barbarum L. fruits. In this study, miRNA levels in L. barbarum fruit samples at four developmental stages, were assayed using Illumina HiSeqTM2000. This revealed the presence of 50 novel miRNAs and 38 known miRNAs in L. barbarum fruits. Of the novel miRNAs, 36 were specific to L. barbarum fruits compared with L. chinense. A number of stage-specific miRNAs were identified and GO terms were assigned to 194 unigenes targeted by miRNAs. The majority of GO terms of unigenes targeted by differentially expressed miRNAs are "intracellular organelle," "binding," "metabolic process," "pigmentation," and "biological regulation." Enriched KEGG analysis indicated that nucleotide excision repair and ubiquitin mediated proteolysis were over-represented during the initial stage of ripening, with ABC transporters and sulfur metabolism pathways active during the middle stages and ABC transporters and spliceosome enriched in the final stages of ripening. Several miRNAs and their targets serving as potential regulators in L. barbarum fruit ripening were identified using quantitative reverse transcription polymerase chain reaction. The miRNA-target interactions were predicted for L. barbarum ripening regulators including miR156/157 with LbCNR and LbWRKY8, and miR171 with LbGRAS. Additionally, regulatory interactions potentially controlling fruit quality and nutritional value via sugar and secondary metabolite accumulation were identified. These include miR156 targeting of fructokinase and 1-deoxy-D-xylulose-5-phosphate synthase and miR164 targeting of beta-fructofuranosidase. In sum, valuable information revealed by small RNA sequencing in this study will provide a solid foundation for uncovering the miRNA-mediated mechanism of fruit ripening and quality in this nutritional food.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 33%
Student > Bachelor 5 10%
Researcher 5 10%
Student > Master 4 8%
Student > Doctoral Student 3 6%
Other 4 8%
Unknown 12 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 45%
Biochemistry, Genetics and Molecular Biology 6 12%
Chemical Engineering 1 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Arts and Humanities 1 2%
Other 3 6%
Unknown 15 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#15,347,611
of 22,829,083 outputs
Outputs from Frontiers in Plant Science
#10,841
of 20,139 outputs
Outputs of similar age
#161,015
of 274,965 outputs
Outputs of similar age from Frontiers in Plant Science
#166
of 355 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,139 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,965 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 355 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.