↓ Skip to main content

Selective non-enzymatic total bilirubin detection in serum using europium complexes with different β-diketone-derived ligands as luminescence probes

Overview of attention for article published in Analytical & Bioanalytical Chemistry, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
9 Mendeley
Title
Selective non-enzymatic total bilirubin detection in serum using europium complexes with different β-diketone-derived ligands as luminescence probes
Published in
Analytical & Bioanalytical Chemistry, July 2018
DOI 10.1007/s00216-018-1243-z
Pubmed ID
Authors

Wei Yang, Jinfeng Xia, Guohong Zhou, Danyu Jiang, Qiang Li, Shiwei Wang, Xiaohong Zheng, Xi Li, Yibo Shen, Xin Li

Abstract

Three europium(III) complexes, Eu(ectfd)3 (Hectfd = 1-(9-ethyl-9H-carbazol-7-yl)-4,4,4-trifluorobutane-1,3-dione), Eu(tta)3 (Htta = 4,4,4-trifluoro-1-(thiophen-2-yl)-butane-1,3-dione), and Eu(dbt)3 (Hdbt = 2-(4',4',4'-trifluoro-1',3'-dioxobutyl)dibenzothiophene), were synthesized and employed to detect total bilirubin (BR) in blood-serum samples. UV-visible absorption and fluorescence (FL) spectroscopies were used to evaluate the selectivity of each europium (III) fluorescence probe to BR, which was shown to remarkably reduce the luminescence intensities of the europium(III) complexes at a wavelength of 612 nm. The luminescence intensity of each complex is linearly related to BR concentration. Eu(tta)3 was shown to be the more-appropriate fluorescence probe for the sensitive and reliable detection of total BR in blood serum samples than either Eu(ectfd)3 or Eu(dbt)3. This observation can be ascribed to special σ-hole bonding between Htta and BR. In addition, the optimal pH test conditions for the detection of BR in human serum by the Eu(tta)3 probe were determined. Sensitivity was shown to be dramatically affected by the pH of the medium. The experimental results reveal that pH 7.5 is optimal for this probe, which coincides with the pH of human serum. Furthermore, BR detection using the Eu(tta)3 luminescence probe is simple, practical, and relatively free of interference from coexisting substances; it has a minimum detection limit (DL) of 68 nM and is a potential candidate for the routine assessment of total BR in serum samples. Graphical Abstract ᅟ.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 22%
Professor 1 11%
Student > Ph. D. Student 1 11%
Student > Master 1 11%
Unknown 4 44%
Readers by discipline Count As %
Engineering 2 22%
Chemistry 2 22%
Biochemistry, Genetics and Molecular Biology 1 11%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 October 2018.
All research outputs
#17,242,285
of 25,385,509 outputs
Outputs from Analytical & Bioanalytical Chemistry
#5,585
of 9,619 outputs
Outputs of similar age
#219,516
of 341,271 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#79
of 177 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 31st percentile – i.e., 31% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,271 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.