↓ Skip to main content

Rhabdomyolysis observed at forensic autopsy: a series of 52 cases

Overview of attention for article published in Forensic Science, Medicine and Pathology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
20 Mendeley
Title
Rhabdomyolysis observed at forensic autopsy: a series of 52 cases
Published in
Forensic Science, Medicine and Pathology, July 2018
DOI 10.1007/s12024-018-0003-x
Pubmed ID
Authors

Hsuan-Yun Hu, Shyh-Yuh Wei, Chih-Hsin Pan

Abstract

Rhabdomyolysis is characterized by skeletal muscle injury resulting in the release of intracellular proteins (such as myoglobin) and electrolytes into the blood circulation, which cause acute kidney injury, myoglobinuria and electrolyte imbalances. Clinical diagnosis of rhabdomyolysis is made on the basis of biochemical analysis; however, for forensic autopsies, biochemical data are often not available, and it is necessary to diagnose rhabdomyolysis via histopathological examinations. This study analyzed 52 cases with rhabdomyolysis and applied myoglobin immunohistochemistry to kidney, urine and blood samples. We found that blunt force injuries were the most common cause of rhabdomyolysis across all age groups, and drugs were the second most common cause. The drugs included ketamines, amphetamines, synthetic cathinones, entheogens, benzodiazepines, opioid analgesics, and anesthesia. Less than 60% of our cases had biochemical data, including myoglobin (92.5~416,978 ng/mL), creatine kinase (220~774,015 U/L), potassium (1.6~10.3 meq/L), calcium (2.7~29.2 mg/dL), and phosphorus (2.6~14.2 mg/dL). In the kidney tissue sections, we found that 95% of the rhabdomyolysis cases were positive for myoglobin immunohistochemistry and that 96% were associated with acute tubular necrosis. Our findings describe the features of fatal rhabdomyolysis in a large series and suggest that myoglobin immunohistochemistry can be used in post-mortem blood and urine cell blocks to detect myoglobin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Other 4 20%
Student > Doctoral Student 2 10%
Student > Master 2 10%
Student > Ph. D. Student 2 10%
Student > Bachelor 1 5%
Other 0 0%
Unknown 9 45%
Readers by discipline Count As %
Medicine and Dentistry 5 25%
Veterinary Science and Veterinary Medicine 1 5%
Chemical Engineering 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 2 10%
Unknown 9 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2018.
All research outputs
#19,128,784
of 24,357,902 outputs
Outputs from Forensic Science, Medicine and Pathology
#547
of 1,018 outputs
Outputs of similar age
#242,782
of 333,998 outputs
Outputs of similar age from Forensic Science, Medicine and Pathology
#16
of 30 outputs
Altmetric has tracked 24,357,902 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,018 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,998 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.