↓ Skip to main content

Nanopatterned protein-polysaccharide thin films by humidity regulated phase separation

Overview of attention for article published in Journal of Colloid & Interface Science, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nanopatterned protein-polysaccharide thin films by humidity regulated phase separation
Published in
Journal of Colloid & Interface Science, July 2018
DOI 10.1016/j.jcis.2018.07.109
Pubmed ID
Authors

Russell A Banta, Timothy W Collins, Ricky A Curley, Paul W Young, Justin D Holmes, Eoin J Flynn

Abstract

Greater sustainability in mass manufacturing is essential to alleviating anthropogenic climate change. High surface-area, micro- and nano-patterned films have become a fundamental tool in materials science, however these technologies are subject to a dwindling petrochemical supply, increasing costs and disposability concerns. This paper describes the production of patterned biopolymer films utilizing controlled phase separation of biopolymeric thin films into nanopatterns using easily transferable variables and methods. Similar morphologies to those commonly observed with synthetic block-copolymers (BCPs) were achieved across a large range of feature sizes, from 160 nm to >5 μm: Bicontinuous, porous, droplet-matrix, particulated and dimpled. Protein and polysaccharide type, protein to polysaccharide ratio, casting method and ambient humidity were primary conditions found to influence the pore morphology of the films. High protein concentrations (4:1 and 2:1 blends) generally resulted in porous structures whereas high polysaccharide concentrations (1:2 and 1:4 blends) resulted in spherical structures. High humidity conditions (60% + relative humidity) resulted in the growth of large protuberances up to 10 µm in diameter while lower humidity (10-30%) resulted in discrete features smaller than 200 nm.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 24%
Student > Bachelor 4 14%
Researcher 4 14%
Professor 3 10%
Student > Postgraduate 2 7%
Other 4 14%
Unknown 5 17%
Readers by discipline Count As %
Chemistry 7 24%
Agricultural and Biological Sciences 3 10%
Engineering 3 10%
Materials Science 3 10%
Social Sciences 2 7%
Other 3 10%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 August 2018.
All research outputs
#16,728,456
of 25,385,509 outputs
Outputs from Journal of Colloid & Interface Science
#4,587
of 5,984 outputs
Outputs of similar age
#209,406
of 341,271 outputs
Outputs of similar age from Journal of Colloid & Interface Science
#30
of 54 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,984 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,271 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.