↓ Skip to main content

Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry

Overview of attention for article published in Journal of the American Society for Mass Spectrometry, August 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
3 X users
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
27 Mendeley
Title
Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry
Published in
Journal of the American Society for Mass Spectrometry, August 2018
DOI 10.1007/s13361-018-2034-7
Pubmed ID
Authors

Tarick J. El-Baba, Daniel R. Fuller, David A. Hales, David H. Russell, David E. Clemmer

Abstract

Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol and ethanol) favor the all-cis polyproline I helix (PPI); as the temperature is increased, the trans-configured polyproline II helix (PPII) is formed. In polar solvents (methanol and water), PPII is favored at all temperatures. From the experimental data, we determine the relative stabilities of the eight structures in methanol, ethanol, and 1-propanol, as well as four in water, all with respect to PPII. Although these conformers show relatively small differences in free energies, substantial variability is observed in the enthalpies and entropies across the structures and solvents. This requires that enthalpies and entropies be highly correlated: in 1-propanol, cis-configured PPI conformations are energetically favorable but entropically disfavored. In more polar solvents, PPI is enthalpically less favorable and entropy favors trans-configured forms. While either ΔH0 or ΔS0 can favor different structures, no conformation in any solvent is simultaneously energetically and entropically stabilized. These data present a rare opportunity to examine the origin of conformational stability. Graphical Abstract ᅟ.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 41%
Student > Bachelor 3 11%
Other 2 7%
Student > Master 2 7%
Researcher 2 7%
Other 2 7%
Unknown 5 19%
Readers by discipline Count As %
Chemistry 16 59%
Biochemistry, Genetics and Molecular Biology 3 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Unknown 7 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2023.
All research outputs
#6,498,682
of 25,385,509 outputs
Outputs from Journal of the American Society for Mass Spectrometry
#858
of 3,835 outputs
Outputs of similar age
#103,669
of 341,886 outputs
Outputs of similar age from Journal of the American Society for Mass Spectrometry
#9
of 57 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 3,835 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,886 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.