↓ Skip to main content

Functional characterization of biodegradable nanoparticles as antigen delivery system

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, October 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
1 X user
patent
1 patent

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
56 Mendeley
Title
Functional characterization of biodegradable nanoparticles as antigen delivery system
Published in
Journal of Experimental & Clinical Cancer Research, October 2015
DOI 10.1186/s13046-015-0231-9
Pubmed ID
Authors

A. Petrizzo, C. Conte, M. Tagliamonte, M. Napolitano, K. Bifulco, V. Carriero, A. De Stradis, M. L. Tornesello, F. M. Buonaguro, F. Quaglia, L. Buonaguro

Abstract

Peptide based vaccines may suffer from limited stability and inefficient delivery to professional antigen-presenting cells (APCs), such as dendritic cells (DCs). In order to overcome such limitations, several types of biodegradable nanoparticles (NPs) have been developed as carrier system for antigens. The present study describes for the first time the extensive biological characterization of cationic NPs made of poly (D,L-lactide-co-glycolide) (PLGA) and polyethylenimine (PLGA/PEI) as delivery system for protein/peptide antigens, with potential in therapeutic cancer vaccine development. Flow cytometry as well as confocal laser scanning microscopy (CLSM) showed that PLGA/PEI NPs are more readily taken up than PLGA NPs by both human CD14(+) monocytes and mouse Hepa 1-6 hepatoma cell line. No signs of toxicity were observed in either cellular setting. Sequential image acquisition by TEM showed an intracellular apical localization for PLGA NPs and a perinuclear localization for PLGA/PEI NPs. Both NPs showed a clathrin-dependent as well as a caveolin-dependent internalization pathway and, once in the cells, they formed multivesicular endosomes (MVE). Finally, an ex vivo priming experiment showed that PLGA/PEI NPs are comparable to PLGA NPs in delivering a non-self antigen (i.e., ovalbumin - OVA) to immature dendritic cells (imDCs), which matured and induced autologous naïve CD4(+) T cells to differentiate to memory (i.e., central memory and effector memory) cells. Such a differentiation was associated with a Th1 phenotype suggesting a downstream activation and amplification of a CD8(+) T cell cytotoxic response. The same OVA antigen in a soluble form was unable to induce maturation of DCs, indicating that both NP formulations provided an intrinsic adjuvanting effect combined to efficient antigen delivery. Our study represents the first report on side-by-side comparison of PLGA and PLGA/PEI NPs as strategy for protein antigen delivery. PLGA/PEI NPs are superior for cellular uptake and antigen delivery as compared to PLGA NPs. Such an evidence suggests their great potential value for vaccine development, including therapeutic cancer vaccines.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 29%
Student > Bachelor 9 16%
Researcher 7 13%
Student > Master 4 7%
Student > Doctoral Student 3 5%
Other 9 16%
Unknown 8 14%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 10 18%
Agricultural and Biological Sciences 10 18%
Medicine and Dentistry 6 11%
Biochemistry, Genetics and Molecular Biology 5 9%
Engineering 4 7%
Other 9 16%
Unknown 12 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 August 2017.
All research outputs
#7,355,930
of 25,373,627 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#443
of 2,378 outputs
Outputs of similar age
#83,784
of 289,750 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#7
of 39 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 2,378 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,750 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.