↓ Skip to main content

In silico mapping of quantitative trait loci (QTL) regulating the milk ionome in mice identifies a milk iron locus on chromosome 1

Overview of attention for article published in Mammalian Genome, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
14 Mendeley
Title
In silico mapping of quantitative trait loci (QTL) regulating the milk ionome in mice identifies a milk iron locus on chromosome 1
Published in
Mammalian Genome, August 2018
DOI 10.1007/s00335-018-9762-7
Pubmed ID
Authors

Darryl L. Hadsell, Louise A. Hadsell, Monique Rijnkels, Yareli Carcamo-Bahena, Jerry Wei, Peter Williamson, Michael A. Grusak

Abstract

The breast-feeding neonate depends on mother's milk for both macronutrients and micronutrients including minerals. The goals of the present study were to document the effects of genetic background in mice on milk concentrations of select minerals and to use genome-wide association study (GWAS) to identify quantitative trait loci (QTL) regulating milk mineral concentrations. Milk samples from lactating mice in each of 31 different inbred strains of the mouse diversity panel (MDP) were analyzed by inductively coupled plasma-optical emission spectroscopy to determine the concentrations of calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), sulfur (S), and zinc (Zn). GWAS identified a single pleiotropic milk mineral concentration QTL (Mmcq) on chromosome 3 for Ca, Mg, and P. For the remaining minerals, six QTL were detected for Fe, four for K, three for Zn, and one for S. Intersecting the Mmcq with published chromatin immunoprecipitation sequence data identified 15 out of 4633 high-linkage disequilibrium single-nucleotide polymorphisms that resided in signal transducer and activation of transcription 5 (STAT5) binding regions. A milk Fe-associated locus (Mmcq9) on chromosome 1 contained an SNP that localized to a STAT5 binding region and intersected with a HOMER motif predicted to bind the transcriptional regulator E74-Like ETS transcription factor 5. This locus also contained the genes for solute carrier family (Slc) members Slc9a2, Slc9a4, Slc39a10, and Slc40a1. Expression analysis of these transporters supports the conclusion that Slc9a2 and Slc40a1 within the mammary gland could mediate the effect of Mmcq9 on milk Fe concentration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 14%
Researcher 2 14%
Professor 1 7%
Student > Master 1 7%
Other 1 7%
Other 0 0%
Unknown 7 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 14%
Agricultural and Biological Sciences 2 14%
Nursing and Health Professions 1 7%
Immunology and Microbiology 1 7%
Psychology 1 7%
Other 1 7%
Unknown 6 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2018.
All research outputs
#15,160,034
of 23,316,003 outputs
Outputs from Mammalian Genome
#918
of 1,139 outputs
Outputs of similar age
#199,470
of 331,664 outputs
Outputs of similar age from Mammalian Genome
#13
of 21 outputs
Altmetric has tracked 23,316,003 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,139 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,664 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.