↓ Skip to main content

Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus

Overview of attention for article published in Virus Research, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus
Published in
Virus Research, November 2015
DOI 10.1016/j.virusres.2015.10.003
Pubmed ID
Authors

Neena Mitter, Ying Zhai, Anh Xu Bai, Keith Chua, Sahar Eid, Myrna Constantin, Roger Mitchell, Hanu R. Pappu

Abstract

Tomato spotted wilt virus (TSWV) is an economically important viral pathogen of a wide range of field and horticultural crops. We developed an artificial microRNA (amiRNA) strategy against TSWV, targeting the nucleoprotein (N) and silencing suppressor (NSs) genes. The amiRNA constructs replaced the natural miRNA in a shortened Arabidopsis 173-nucleotide (nt) miR159a precursor backbone (athmiR159a) without the stem base extending beyond the miR/miR* duplex. Further, each amiRNA was modified to contain a mismatch (wobble) sequence at nucleotide position 12 and 13 on the complementary strand amiRNA*, mimicking the endogenous miR159a sequence structure. Transient expression in N. benthamiana demonstrated that the introduction of a wobble sequence did not alter amiRNA expression levels. Following challenge inoculation with TSWV, plants expressing N-specific amiRNAs with or without the wobble remained asymptomatic and were negative for TSWV by ELISA. In contrast, plants expressing the NSs-specific amiRNAs were symptomatic and accumulated high levels of TSWV. Similar findings were obtained in stably transformed N. tabacum plants. Our results show that a shortened 173-nt athmiR159a backbone is sufficient to express amiRNAs and that the presence of mismatch at position 12-13 does not influence amiRNA expression or conferring of resistance. We also show that selection of target gene and positional effect are critical in amiRNA-based approach for introducing resistance. These findings open the possibility of employing the amiRNA approach for broad-spectrum resistance to tospoviruses as well as other viruses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 22%
Student > Master 8 17%
Student > Ph. D. Student 7 15%
Student > Doctoral Student 4 9%
Professor > Associate Professor 4 9%
Other 5 11%
Unknown 8 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 41%
Biochemistry, Genetics and Molecular Biology 9 20%
Environmental Science 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Medicine and Dentistry 1 2%
Other 0 0%
Unknown 15 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2015.
All research outputs
#19,944,994
of 25,374,917 outputs
Outputs from Virus Research
#2,510
of 3,302 outputs
Outputs of similar age
#200,413
of 293,335 outputs
Outputs of similar age from Virus Research
#29
of 53 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,302 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 293,335 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.