↓ Skip to main content

Duck enteritis virus activates CaMKKβ-AMPK to trigger autophagy in duck embryo fibroblast cells via increased cytosolic calcium

Overview of attention for article published in Virology Journal, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
7 Mendeley
Title
Duck enteritis virus activates CaMKKβ-AMPK to trigger autophagy in duck embryo fibroblast cells via increased cytosolic calcium
Published in
Virology Journal, August 2018
DOI 10.1186/s12985-018-1029-0
Pubmed ID
Authors

Haichang Yin, Lili Zhao, Yiping Wang, Siqi Li, Hong Huo, Hongyan Chen

Abstract

The results of our previous study showed that impaired cellular energy metabolism contributes to duck enteritis virus-induced autophagy via the 5`-adenosine monophosphate-activated protein kinase (AMPK)/tuberous sclerosis complex 2/mammalian target of rapamycin pathway in duck embryo fibroblast (DEF) cells. However, it remains unknown whether any other underlying mechanisms of AMPK activation are involved in autophagy induction. The activity of CaMKKβ and AMPK in DEF cells infected with DEV were evaluated.The Effect of inhibitory activity of CaMKKβ on DEV-induced autophagy was investigated. In addtion to, the cytosolic calcium level in DEF cells infected with DEV were evaluated.The Effect of inhibitory cytosolic calcium level on DEV-induced autophagy was investigated. In this study, duck enteritis virus (DEV) infection activated CaMKKβ and its substrate molecule AMPK at 36, 48, and 60 h post-infection (hpi). STO-609, a CaMKKβ inhibitor, or CaMKKβ siRNA significantly inhibited the activation of DEV to AMPK, LC3I to LC3II transformation, and GFP-LC3 puncta distribution. In addition, inhibition of CaMKKβ activity also significantly reduced progeny DEV titer and gB protein expression. Besides, cytosolic calcium (Ca2+) was higher in DEV-infected cells than mock controls at 36, 48, and 60 hpi, respectively. Treatment of DEV-infected cells with 1,2-Bis (2-aminophenoxy) ethane-N, N, N', N-tetraacetic acid (BAPTA-AM) significantly reduced intracellular Ca2+ ion concentrations, as well as CaMKKβ and AMPK activities, and subsequent autophagy, in addition to viral protein synthesis and viral titer. These results showed that elevated [Ca2+]cyto-mediated activation of CaMKKβ managed the activation of AMPK, which then positively regulated autophagy, thereby providing further insight into DEV-host interactions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Other 1 14%
Student > Doctoral Student 1 14%
Student > Bachelor 1 14%
Student > Ph. D. Student 1 14%
Student > Master 1 14%
Other 0 0%
Unknown 2 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 29%
Agricultural and Biological Sciences 1 14%
Psychology 1 14%
Medicine and Dentistry 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2018.
All research outputs
#14,137,809
of 23,099,576 outputs
Outputs from Virology Journal
#1,500
of 3,071 outputs
Outputs of similar age
#179,386
of 330,726 outputs
Outputs of similar age from Virology Journal
#11
of 41 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,071 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.8. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,726 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.