↓ Skip to main content

DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer

Overview of attention for article published in Clinical Epigenetics, August 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
79 Mendeley
Title
DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer
Published in
Clinical Epigenetics, August 2018
DOI 10.1186/s13148-018-0539-3
Pubmed ID
Authors

Varun Sasidharan Nair, Salman M. Toor, Rowaida Z. Taha, Hibah Shaath, Eyad Elkord

Abstract

Colorectal cancer (CRC) is the third most commonly diagnosed human malignancy worldwide. Upregulation of inhibitory immune checkpoints by tumor-infiltrating immune cells (TIICs) or their ligands by tumor cells leads to tumor evasion from host immunosurveillance. Changes in DNA methylation pattern and enrichment of methylated histone marks in the promoter regions could be major contributors to the upregulation of immune checkpoints (ICs) in the tumor microenvironment (TME). Relative expressions of various immune checkpoints and ligands in colon normal tissues (NT) and colorectal tumor tissues (TT) were assessed by qRT-PCR. The epigenetic modifications behind this upregulation were determined by investigating the CpG methylation status of their promoter regions using bisulfite sequencing. Distributions of histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) in promoter regions of these genes were assessed by chromatin immunoprecipitation (ChIP) assay. We found that the expression levels of PD-1, CTLA-4, TIM-3, TIGIT, PD-L1, and galectin-9 were significantly higher in colorectal tumor tissues, compared with colon normal tissues. To study the role of DNA methylation, we checked the promoter CpG methylation of ICs and ligands and found that only CTLA-4 and TIGIT, among other genes, were significantly hypomethylated in TT compared with NT. Next, we checked the abundance of repressive histones (H3K9me3 and H3K27me3) in the promoter regions of ICs/ligands. We found that bindings of H3K9me3 in PD-1 and TIGIT promoters and H3K27me3 in CTLA-4 promotor were significantly lower in TT compared with NT. Additionally, bindings of both H3K9me3 and H3K27me3 in the TIM-3 promoter were significantly lower in TT compared with NT. This study shows that both DNA hypomethylation and H3K9me3 and H3K27me3 repressive histones are involved in upregulation of CTLA-4 and TIGIT genes. However, repressive histones, but not DNA hypomethylation, are involved in upregulation of PD-1 and TIM-3 genes in CRC tumor tissue. These epigenetic modifications could be utilized as diagnostic biomarkers for CRC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 79 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 13%
Student > Bachelor 10 13%
Researcher 9 11%
Student > Doctoral Student 8 10%
Student > Ph. D. Student 8 10%
Other 11 14%
Unknown 23 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 29%
Immunology and Microbiology 9 11%
Medicine and Dentistry 8 10%
Agricultural and Biological Sciences 6 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Other 4 5%
Unknown 26 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2018.
All research outputs
#18,646,262
of 23,099,576 outputs
Outputs from Clinical Epigenetics
#1,009
of 1,270 outputs
Outputs of similar age
#254,336
of 330,726 outputs
Outputs of similar age from Clinical Epigenetics
#23
of 27 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,270 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,726 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.