↓ Skip to main content

Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks

Overview of attention for article published in International Journal of Molecular Sciences, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks
Published in
International Journal of Molecular Sciences, August 2018
DOI 10.3390/ijms19082326
Pubmed ID
Authors

Agnese Po, Luana Abballe, Claudia Sabato, Francesca Gianno, Martina Chiacchiarini, Giuseppina Catanzaro, Enrico De Smaele, Felice Giangaspero, Elisabetta Ferretti, Evelina Miele, Zein Mersini Besharat

Abstract

Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 37%
Student > Bachelor 3 16%
Researcher 3 16%
Student > Master 1 5%
Professor > Associate Professor 1 5%
Other 0 0%
Unknown 4 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 26%
Medicine and Dentistry 2 11%
Neuroscience 2 11%
Agricultural and Biological Sciences 2 11%
Chemical Engineering 1 5%
Other 2 11%
Unknown 5 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2018.
All research outputs
#20,663,600
of 25,385,509 outputs
Outputs from International Journal of Molecular Sciences
#31,912
of 44,353 outputs
Outputs of similar age
#264,898
of 341,021 outputs
Outputs of similar age from International Journal of Molecular Sciences
#465
of 667 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 44,353 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,021 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 667 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.