↓ Skip to main content

Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes

Overview of attention for article published in Microbiome, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

blogs
1 blog
twitter
20 X users
facebook
3 Facebook pages

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
49 Mendeley
Title
Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes
Published in
Microbiome, August 2018
DOI 10.1186/s40168-018-0512-6
Pubmed ID
Authors

Amanpreet Singh, Erica Lasek-Nesselquist, Vishnu Chaturvedi, Sudha Chaturvedi

Abstract

Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), has led to the deaths of millions of hibernating bats in the United States of America (USA) and Canada. Efficient strategies are needed to decontaminate Pd from the bat hibernacula to interrupt the disease transmission cycle without affecting the native microbes. Previously, we discovered a novel Trichoderma polysporum (Tp) strain (WPM 39143), which inhibited the growth of Pd in autoclaved soil samples. In the present investigation, we used culture-based approaches to determine Tp-induced killing of native and enriched Pd in the natural soil of two bat hibernacula. We also assessed the impact of Tp treatment on native microbial communities by metagenomics. Our results demonstrated that Tp at the concentration of 105 conidia/g soil caused 100% killing of native Pd in culture within 5 weeks of incubation. A 10-fold higher concentration of Tp (106 conidia/g soil) killed an enriched Pd population (105 conidia/g soil). The 12,507 fungal operational taxonomic units (OTUs, dominated by Ascomycota and Basidiomycota) and 27,427 bacterial OTUs (dominated by Acidobacteria and Proteobacteria) comprised the native soil microbes of the two bat hibernacula. No significant differences in fungal and bacterial relative abundances were observed between untreated and Tp-treated soil (105 Tp conidia/g soil, p ≤ 0.05). Our results suggest that Tp-induced killing of Pd is highly specific, with minimal to no impact on the indigenous microbes present in the soil samples. These findings provide the scientific rationale for the field trials of Tp in the WNS-affected hibernacula for the effective decontamination of Pd and the control of WNS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 20%
Student > Bachelor 7 14%
Other 5 10%
Student > Ph. D. Student 4 8%
Student > Doctoral Student 3 6%
Other 8 16%
Unknown 12 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 41%
Biochemistry, Genetics and Molecular Biology 7 14%
Environmental Science 3 6%
Unspecified 1 2%
Computer Science 1 2%
Other 1 2%
Unknown 16 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2018.
All research outputs
#1,737,800
of 25,746,891 outputs
Outputs from Microbiome
#633
of 1,792 outputs
Outputs of similar age
#34,805
of 342,050 outputs
Outputs of similar age from Microbiome
#27
of 56 outputs
Altmetric has tracked 25,746,891 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,792 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.0. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,050 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.