↓ Skip to main content

Thermosensitive Hydrogel Co-loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy

Overview of attention for article published in The AAPS Journal, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
77 Mendeley
Title
Thermosensitive Hydrogel Co-loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy
Published in
The AAPS Journal, September 2015
DOI 10.1208/s12248-015-9828-3
Pubmed ID
Authors

Tingting Li, Mingfu Zhang, Jianzhen Wang, Tianqi Wang, Yao Yao, Xiaomei Zhang, Cai Zhang, Na Zhang

Abstract

Chemoradiotherapy, as a well-established paradigm to treat various cancers, still calls for novel strategies. Recently, gold nanoparticles (AuNPs) have been shown to play an important role as a radiosensitizer in cancer radiotherapy. The aim of this study was to evaluate the combination of polyethylene glycol (PEG) modified AuNPs and doxorubicin (DOX) to improve cancer chemoradiotherapy, in which the AuNPs was the radiosensitizer and the DOX was the model chemotherapeutic. A Pluronic® F127-based thermosensitive hydrogel (Au-DOX-Gel) loading AuNPs and DOX was developed by "cold method" for intratumoral injection. The formulation was optimized at a F127 concentration of 22% for Au-DOX-Gel. The release profiles compared to a control group were assessed in vitro and in vivo. Au-DOX-Gel showed sustained release of AuNPs and DOX. The cell viability and surviving fraction of mouse melanoma (B16) and Human hepatocellular liver carcinoma (HepG2) cells were significantly inhibited by the combination treatment of DOX and AuNPs under radiation. Tumor sizes of mice were significantly decreased by Au-DOX-Gel compared to controls. Interestingly, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and Ki-67 staining results showed that tumor cell growth and proliferation were inhibited by AuNPs combined with DOX under radiation, suggesting that the radiosensitization activity and combination effects might be caused by inhibition of tumor cell growth and proliferation. Furthermore, the results of skin safety tests, histological observation of organs, and the body weight changes indicated in vivo safety of Au-DOX-Gel. In conclusion, the Au-DOX-Gel developed in this study could represent a promising strategy for improved cancer chemoradiotherapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 18%
Student > Master 13 17%
Student > Bachelor 12 16%
Researcher 10 13%
Student > Doctoral Student 3 4%
Other 8 10%
Unknown 17 22%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 15 19%
Medicine and Dentistry 10 13%
Chemistry 9 12%
Biochemistry, Genetics and Molecular Biology 7 9%
Engineering 4 5%
Other 9 12%
Unknown 23 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2015.
All research outputs
#15,348,897
of 22,830,751 outputs
Outputs from The AAPS Journal
#917
of 1,287 outputs
Outputs of similar age
#159,366
of 272,394 outputs
Outputs of similar age from The AAPS Journal
#13
of 25 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,287 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,394 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.