↓ Skip to main content

Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq

Overview of attention for article published in Veterinary Research, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
35 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
56 Mendeley
Title
Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq
Published in
Veterinary Research, August 2018
DOI 10.1186/s13567-018-0578-y
Pubmed ID
Authors

Rie Watanabe, Christina Eckstrand, Hongwei Liu, Niels C. Pedersen

Abstract

Laboratory cats were infected with a serotype I cat-passaged field strain of FIP virus (FIPV) and peritoneal cells harvested 2-3 weeks later at onset of lymphopenia, fever and serositis. Comparison peritoneal cells were collected from four healthy laboratory cats by peritoneal lavage and macrophages predominated in both populations. Differential mRNA expression analysis identified 5621 genes as deregulated in peritoneal cells from FIPV infected versus normal cats; 956 genes showed > 2.0 Log2 Fold Change (Log2FC) and 1589 genes showed < -2.0 Log2FC. Eighteen significantly upregulated pathways were identified by InnateDB enrichment analysis. These pathways involved apoptosis, cytokine-cytokine receptor interaction, pathogen recognition, Jak-STAT signaling, NK cell mediated cytotoxicity, several chronic infectious diseases, graft versus host disease, allograft rejection and certain autoimmune disorders. Infected peritoneal macrophages were activated M1 type based on pattern of RNA expression. Apoptosis was found to involve large virus-laden peritoneal macrophages more than less mature macrophages, suggesting that macrophage death played a role in virus dissemination. Gene transcripts for MHC I but not II receptors were upregulated, while mRNA for receptors commonly associated with virus attachment and identified in other coronaviruses were either not detected (APN, L-SIGN), not deregulated (DDP-4) or down-regulated (DC-SIGN). However, the mRNA for FcγRIIIA (CD16A/ADCC receptor) was significantly upregulated, supporting entry of virus as an immune complex. Analysis of KEGG associated gene transcripts indicated that Th1 polarization overshadowed Th2 polarization, but the addition of relevant B cell associated genes previously linked to FIP macrophages tended to alter this perception.

X Demographics

X Demographics

The data shown below were collected from the profiles of 35 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 18%
Student > Ph. D. Student 8 14%
Researcher 5 9%
Student > Bachelor 4 7%
Student > Postgraduate 4 7%
Other 9 16%
Unknown 16 29%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 14 25%
Biochemistry, Genetics and Molecular Biology 7 13%
Agricultural and Biological Sciences 4 7%
Immunology and Microbiology 3 5%
Nursing and Health Professions 2 4%
Other 10 18%
Unknown 16 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 October 2023.
All research outputs
#2,229,423
of 25,385,509 outputs
Outputs from Veterinary Research
#66
of 1,337 outputs
Outputs of similar age
#44,237
of 340,782 outputs
Outputs of similar age from Veterinary Research
#5
of 34 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,337 research outputs from this source. They receive a mean Attention Score of 5.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,782 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.