↓ Skip to main content

Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model

Overview of attention for article published in BMC Genomic Data, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
56 Mendeley
Title
Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model
Published in
BMC Genomic Data, October 2015
DOI 10.1186/s12863-015-0278-9
Pubmed ID
Authors

Ning Gao, Jiaqi Li, Jinlong He, Guang Xiao, Yuanyu Luo, Hao Zhang, Zanmou Chen, Zhe Zhang

Abstract

In recent years, with the development of high-throughput sequencing technology and the commercial availability of genotyping bead chips, more attention is being directed towards the utilization of abundant genetic markers in animal and plant breeding programs, human disease risk prediction and personal medicine. Several useful approaches to accomplish genomic prediction have been developed and used widely, but still have room for improvement to gain more accuracy. In this study, an improved Bayesian approach, termed BayesBπ, which differs from the original BayesB in priors assigning, is proposed. An effective method for calculating the locus-specific π by converting p-values from association between SNPs and traits' phenotypes is given and systemically validated using a German Holstein dairy cattle population. Furthermore, the new method is applied to a loblolly pine (Pinus taeda) dataset. Compared with the original BayesB, BayesBπ can improve the accuracy of genomic prediction up to 7.62 % for milk fat percentage, a trait which shows a large effect of quantitative trait loci (QTL). For milk yield, which is controlled by small to moderate effect genes, the accuracy of genomic prediction can be improved up to 4.94 %. For somatic cell score, of which no large effect QTL has been reported, GBLUP performs better than Bayesian methods. BayesBπ outperforms BayesCπ in 10 out of 12 scenarios in the dairy cattle population, especially in small to moderate population sizes where accuracy of BayesCπ are dramatically low. Results of the loblolly pine dataset show that BayesBπ outperforms BayesB in 14 out of 17 traits and BayesCπ in 8 out of 17 traits, respectively. For traits controlled by large effect genes, BayesBπ can improve the accuracy of genomic prediction and unbiasedness of BayesB in moderate size populations. Knowledge of traits' genetic architectures can be integrated into practices of genomic prediction by assigning locus-specific priors to markers, which will help Bayesian approaches perform better in variable selection and marker effects shrinkage.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 21%
Student > Master 11 20%
Researcher 8 14%
Student > Doctoral Student 3 5%
Student > Postgraduate 3 5%
Other 6 11%
Unknown 13 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 50%
Biochemistry, Genetics and Molecular Biology 7 13%
Engineering 2 4%
Mathematics 2 4%
Unspecified 1 2%
Other 2 4%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2015.
All research outputs
#16,720,137
of 25,371,288 outputs
Outputs from BMC Genomic Data
#606
of 1,203 outputs
Outputs of similar age
#164,885
of 291,142 outputs
Outputs of similar age from BMC Genomic Data
#11
of 23 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,203 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 291,142 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.