↓ Skip to main content

Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model

Overview of attention for article published in BMC Pulmonary Medicine, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
25 Mendeley
Title
Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model
Published in
BMC Pulmonary Medicine, August 2018
DOI 10.1186/s12890-018-0701-x
Pubmed ID
Authors

Ranran Dai, Youchao Yu, Guofeng Yan, Xiaoxia Hou, Yingmeng Ni, Guochao Shi

Abstract

Adipose-derived mesenchymal stem cell (ASCs) exerts immunomodulatory roles in asthma. However, the underlying mechanism remains unclear. The present study aimed to explore the effects and mechanisms of ASCs on chronic asthma using an ovalbumin (OVA)-sensitized asthmatic mouse model. Murine ASCs (mASCs) were isolated from male Balb/c mice and identified by the expression of surface markers using flow cytometry. The OVA-sensitized asthmatic mouse model was established and then animals were treated with the mASCs through intratracheal delivery. The therapy effects were assessed by measuring airway responsiveness, performing immuohistochemical analysis, and examining bronchoalveolar lavage fluid (BALF). Additionally, the expression of inflammatory cytokines and lgE was detected by CHIP and ELISA, respectively. The mRNA levels of serum indices were detected using qRT-PCR. The mASCs grew by adherence with fibroblast-like morphology, and showed the positive expression of CD90, CD44, and CD29 as well as the negative expression of CD45 and CD34, indicating that the mASCs were successfully isolated. Administering mASCs to asthmatic model animals through intratracheal delivery reduced airway responsiveness, the number of lymphocytes (P < 0.01) and the expression of lgE (P < 0.01), IL-1β (P < 0.05), IL-4 (P < 0.001), and IL-17F (P < 0.001), as well as increased the serum levels of IL-10 and Foxp3, and the percentage of CD4 + CD25 + Foxp3+ Tregs in the spleen, and reduced the expression of IL-17 (P < 0.05) and RORγ. Intratracheal administration of mASCs alleviated airway inflammation, improved airway remodeling, and relieved airway hyperresponsiveness in an OVA-sensitized asthma model, which might be associated with the restoration of Th1/Th2 cell balance by mASCs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 24%
Student > Bachelor 4 16%
Student > Ph. D. Student 3 12%
Lecturer 1 4%
Researcher 1 4%
Other 1 4%
Unknown 9 36%
Readers by discipline Count As %
Medicine and Dentistry 7 28%
Biochemistry, Genetics and Molecular Biology 4 16%
Pharmacology, Toxicology and Pharmaceutical Science 2 8%
Veterinary Science and Veterinary Medicine 1 4%
Materials Science 1 4%
Other 0 0%
Unknown 10 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2018.
All research outputs
#14,138,420
of 23,099,576 outputs
Outputs from BMC Pulmonary Medicine
#832
of 1,960 outputs
Outputs of similar age
#179,592
of 331,157 outputs
Outputs of similar age from BMC Pulmonary Medicine
#20
of 44 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,960 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,157 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.