↓ Skip to main content

Inhibition of mitophagy decreases survival of Caenorhabditis elegans by increasing protein aggregation

Overview of attention for article published in Molecular and Cellular Biochemistry, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
18 Mendeley
Title
Inhibition of mitophagy decreases survival of Caenorhabditis elegans by increasing protein aggregation
Published in
Molecular and Cellular Biochemistry, August 2018
DOI 10.1007/s11010-018-3418-5
Pubmed ID
Authors

Mehtap Civelek, Jan-Frederik Mehrkens, Nora-Maria Carstens, Elena Fitzenberger, Uwe Wenzel

Abstract

Autophagy of mitochondria, i.e., mitophagy, plays a crucial role in coping with stressors in the aging process, metabolic disturbances, and neurological disorders. Impairments of the process might consequently lead to enhanced accumulation of aged and aggregated proteins and reduced cellular integrity in response to stress. In the present study, we used the stress-sensitive mutant mev-1 of Caenorhabditis elegans to assess the effects of the knockdown of mitophagy relevant genes on survival under heat stress, the amount of autophagosomes, and on protein aggregation. RNA interference for dct-1, drp-1, eat-3, fis-1, fzo1, glb-1, pink-1, and pgam-5 all resulted in a significant reduction of survival time at 37 °C. These effects were associated with a decrease in autophagosomal flux of proteins, as indicated by increased accumulation of GFP-tagged SQST-1, and a reduced amount of lysosomes demonstrating that autophagy was hampered. Moreover, the gene knockdowns led to increased levels of reactive oxygen species in mitochondria and an enhanced protein aggregation. In conclusion, our studies show that mitophagy is of central importance to keep mitochondria functional in order to prevent production of excess reactive oxygen species and protein aggregation and finally a reduction of survival under heat stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 39%
Researcher 2 11%
Student > Bachelor 1 6%
Student > Doctoral Student 1 6%
Unknown 7 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 39%
Veterinary Science and Veterinary Medicine 1 6%
Agricultural and Biological Sciences 1 6%
Medicine and Dentistry 1 6%
Chemistry 1 6%
Other 0 0%
Unknown 7 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2018.
All research outputs
#15,016,514
of 23,099,576 outputs
Outputs from Molecular and Cellular Biochemistry
#1,268
of 2,327 outputs
Outputs of similar age
#198,800
of 331,391 outputs
Outputs of similar age from Molecular and Cellular Biochemistry
#5
of 23 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,327 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,391 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.