↓ Skip to main content

Evolutionary tinkering vs. rational engineering in the times of synthetic biology

Overview of attention for article published in Life Sciences, Society and Policy, August 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#13 of 128)
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

blogs
1 blog
twitter
53 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
52 Mendeley
Title
Evolutionary tinkering vs. rational engineering in the times of synthetic biology
Published in
Life Sciences, Society and Policy, August 2018
DOI 10.1186/s40504-018-0086-x
Pubmed ID
Authors

Víctor de Lorenzo

Abstract

Synthetic biology is not only a contemporary reformulation of the recombinant DNA technologies of the last 30 years, combined with descriptive language imported from electrical and industrial engineering. It is also a new way to interpret living systems and a statement of intent for the use and reprogramming of biological objects for human benefit. In this context, the notion of designer biology is often presented as opposed to natural selection following the powerful rationale formulated by François Jacob on evolution-as-tinkering. The onset of synthetic biology opens a different perspective by leaving aside the question about the evolutionary origin of biological phenomena and focusing instead on the relational logic and the material properties of the corresponding components that make biological system work as they do. Once a functional challenge arises, the solution space for the problem is not homogeneous but it has attractors that can be accessed either through random exploration (as evolution does) or rational design (as engineers do). Although these two paths (i.e. evolution and engineering) are essentially different, they can lead to solutions to specific mechanistic bottlenecks that frequently coincide or converge-and one can easily help to understand and improve the other. Alas, productive discussions on these matters are often contaminated by ideological preconceptions that prevent adoption of the engineering metaphor to understand and ultimately reshape living systems-as ambitioned by synthetic biology. Yet, some possible ways to overcome the impasse are feasible. In parallel to Monod's evolutionary paradox of teleo-logy (finality/purpose) vs. teleo-nomy (appearance of finality/purpose), a mechanistic paradox could be entertained between techno-logy (rational engineering) vs techno-nomy (appearance of rational engineering), all for the sake of understanding the relational logic that enables live systems to function as physico-chemical entities in time and space. This article thus proposes a radical vision of synthetic biology through the lens of the engineering metaphor.

X Demographics

X Demographics

The data shown below were collected from the profiles of 53 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 33%
Researcher 8 15%
Student > Master 6 12%
Student > Bachelor 5 10%
Student > Doctoral Student 3 6%
Other 6 12%
Unknown 7 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 40%
Engineering 4 8%
Agricultural and Biological Sciences 3 6%
Medicine and Dentistry 3 6%
Chemical Engineering 2 4%
Other 10 19%
Unknown 9 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 36. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2024.
All research outputs
#1,151,107
of 25,736,439 outputs
Outputs from Life Sciences, Society and Policy
#13
of 128 outputs
Outputs of similar age
#23,785
of 342,365 outputs
Outputs of similar age from Life Sciences, Society and Policy
#1
of 7 outputs
Altmetric has tracked 25,736,439 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 128 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.9. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,365 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them