↓ Skip to main content

The role of maternal nutrition, metabolic function and the placenta in developmental programming of renal dysfunction

Overview of attention for article published in Clinical & Experimental Pharmacology & Physiology, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of maternal nutrition, metabolic function and the placenta in developmental programming of renal dysfunction
Published in
Clinical & Experimental Pharmacology & Physiology, December 2015
DOI 10.1111/1440-1681.12505
Pubmed ID
Authors

V F I Richter, J F Briffa, K M Moritz, M E Wlodek, D H Hryciw

Abstract

The intrauterine environment is critical for the development of the fetus. Barker and colleagues were the first to identify that adverse perturbations during fetal development are associated with an increased risk of developing diseases in adulthood, including cardiorenal disease. Specifically for the kidney, perturbations in utero can lead to nephron deficits and renal dysfunction by a number of mechanisms. Altered programming of nephron number is associated with an increased risk of developing kidney disease via glomerular hypertrophy and reduced vasodilative capacity of the renal blood vessels; both of which would contribute to hypertension in adulthood, with the males being more susceptible to disease outcomes. Additionally, alterations in the renin-angiotensin system (RAS) such as an upregulation or downregulation of specific receptors, depending on the nature of the insult, have also been implicated in the development of renal dysfunction. Sex-specific differences in the expression of the RAS during late gestation and in the early postnatal environment have also been identified. Extensive research has demonstrated that both uteroplacental insufficiency and maternal malnutrition alter renal development in utero. Equally, exposure to maternal diabetes and maternal obesity during development are also associated with an increased risk of developing renal disease, however the mechanism behind this association is poorly understood. Therefore, identifying the link between an adverse intrauterine environment and the programmed kidney disease risk in adulthood may facilitate the development of strategies to alleviate the epidemics of cardiorenal disease worldwide, in addition to understanding why males are more susceptible to adulthood cardiovascular diseases. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Unknown 51 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 15%
Student > Master 8 15%
Student > Ph. D. Student 7 13%
Student > Postgraduate 7 13%
Student > Bachelor 5 9%
Other 9 17%
Unknown 9 17%
Readers by discipline Count As %
Medicine and Dentistry 17 32%
Biochemistry, Genetics and Molecular Biology 6 11%
Agricultural and Biological Sciences 5 9%
Psychology 4 8%
Nursing and Health Professions 2 4%
Other 8 15%
Unknown 11 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2016.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Clinical & Experimental Pharmacology & Physiology
#1,056
of 1,426 outputs
Outputs of similar age
#275,169
of 395,130 outputs
Outputs of similar age from Clinical & Experimental Pharmacology & Physiology
#7
of 10 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,426 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,130 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.