↓ Skip to main content

Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation

Overview of attention for article published in European Journal of Cardio-Thoracic Surgery, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation
Published in
European Journal of Cardio-Thoracic Surgery, August 2015
DOI 10.1093/ejcts/ezv244
Pubmed ID
Authors

Margaret Passmore, Maria Nataatmadja, Yoke L. Fung, Bronwyn Pearse, Sarah Gabriel, Peter Tesar, John F. Fraser

Abstract

Calcific aortic valve stenosis (CAVS) is an important clinical problem predominantly affecting elderly individuals. Studies suggest that the progression of CAVS is actively regulated with valve endothelial injury leading to inflammation, fibrosis and calcification. The aim of this study was to delineate the possible regulatory role of osteopontin (OPN) on high-mobility group box 1 (HMGB1) function and the associated inflammatory and fibrotic response in CAVS. Aortic valve leaflets were collected from CAVS patients undergoing aortic valve replacement (n = 40), and control aortic valve leaflets were obtained from heart transplant recipients (n = 15). Valves and plasma were analysed by quantitative real-time polymerase chain reaction (PCR), immunohistochemical staining and Western blot. Recombinant OPN or neutralizing OPN antibody was added to cultured endothelial and valvular interstitial cells (VICs), and cell proliferation scores and HMGB1 expression were assessed. CAVS valves had a decreased total percentage of VICs but increased numbers of infiltrating macrophages relative to control valves. RT-PCR studies showed higher expression of OPN, the inflammatory cytokine tumour necrosis factor-alpha as well as markers of fibrosis, tissue inhibitor of matrix metalloproteinase 1 and matrix metalloproteinase 2 in CAVS valves. Elevated expression of OPN was also observed in plasma of CAVS patients compared with controls. HMGB1 was detected in the secretory granules of cultured valve endothelial and VICs derived from CAVS valves. The addition of exogenous OPN inhibited the proliferation of cultured endothelial and VICs from CAVS valves and was associated with the extracellular expression of HMGB1, whereas neutralizing OPN had the opposite effect. We conclude that altered OPN expression in CAVS affects cellular HMGB1 function inducing cytoplasmic translocation and secretion of HMGB1 in endothelial cells and VICs, thus indicating a regulatory role for OPN in the progression of CAVS through alteration of HMGB1 function.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 27%
Student > Master 6 14%
Researcher 5 11%
Student > Doctoral Student 5 11%
Student > Bachelor 3 7%
Other 9 20%
Unknown 4 9%
Readers by discipline Count As %
Medicine and Dentistry 14 32%
Engineering 5 11%
Biochemistry, Genetics and Molecular Biology 4 9%
Agricultural and Biological Sciences 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Other 7 16%
Unknown 8 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2015.
All research outputs
#18,429,163
of 22,830,751 outputs
Outputs from European Journal of Cardio-Thoracic Surgery
#2,291
of 2,983 outputs
Outputs of similar age
#190,403
of 264,396 outputs
Outputs of similar age from European Journal of Cardio-Thoracic Surgery
#31
of 36 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,983 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.