↓ Skip to main content

Inhibition of Stat3 signaling pathway decreases TNF-α-induced autophagy in cementoblasts

Overview of attention for article published in Cell and Tissue Research, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
7 Mendeley
Title
Inhibition of Stat3 signaling pathway decreases TNF-α-induced autophagy in cementoblasts
Published in
Cell and Tissue Research, August 2018
DOI 10.1007/s00441-018-2890-2
Pubmed ID
Authors

Leilei Wang, Yunlong Wang, Mingyuan Du, Zhijian Liu, Zhengguo Cao, Yunru Hao, Hong He

Abstract

Autophagy is a self-digestive process that eliminates impaired or aged proteins and potentially toxic intracellular components to maintain homeostasis. We previously demonstrated that TNF-α played a critical role in cementoblast differentiation, mineralization and apoptosis; however, the effect of TNF-α on cementoblast autophagy has remained unclear. In this study, an elevated immunofluorescence signal of LC3B and autophagic vacuoles, autophagosomes and autolysosomes were detected under TNF-α stimulation in OCCM-30 cells. Autophagy-related genes and proteins, Beclin-1, LC3A and Atg-5, were significantly upregulated by TNF-α in a time- and concentration-dependent manner. During this process, the activity of Stat3 was dramatically enhanced and when the activity of Stat3 was blocked by either a specific chemical inhibitor or siRNA transfection before TNF-α stimulation, the TNF-α-induced upregulation of autophagy-related genes and proteins was strongly inhibited. Our results suggest that TNF-α induced autophagy in cementoblasts was dependent, or partially dependent on the activity of Stat3 signaling pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Other 1 14%
Unknown 6 86%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 14%
Unknown 6 86%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2018.
All research outputs
#21,180,380
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#2,002
of 2,279 outputs
Outputs of similar age
#291,049
of 332,632 outputs
Outputs of similar age from Cell and Tissue Research
#22
of 26 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,632 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.