↓ Skip to main content

Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams

Overview of attention for article published in Microbial Ecology, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

blogs
1 blog
twitter
4 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
27 Mendeley
Title
Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams
Published in
Microbial Ecology, August 2018
DOI 10.1007/s00248-018-1237-6
Pubmed ID
Authors

Scott Hotaling, Corey R. Quackenbush, Julian Bennett-Ponsford, Daniel D. New, Lenin Arias-Rodriguez, Michael Tobler, Joanna L. Kelley

Abstract

Extreme environments typically require costly adaptations for survival, an attribute that often translates to an elevated influence of habitat conditions on biotic communities. Microbes, primarily bacteria, are successful colonizers of extreme environments worldwide, yet in many instances, the interplay between harsh conditions, dispersal, and microbial biogeography remains unclear. This lack of clarity is particularly true for habitats where extreme temperature is not the overarching stressor, highlighting a need for studies that focus on the role other primary stressors (e.g., toxicants) play in shaping biogeographic patterns. In this study, we leveraged a naturally paired stream system in southern Mexico to explore how elevated hydrogen sulfide (H2S) influences microbial diversity. We sequenced a portion of the 16S rRNA gene using bacterial primers for water sampled from three geographically proximate pairings of streams with high (> 20 μM) or low (~ 0 μM) H2S concentrations. After exploring bacterial diversity within and among sites, we compared our results to a previous study of macroinvertebrates and fish for the same sites. By spanning multiple organismal groups, we were able to illuminate how H2S may differentially affect biodiversity. The presence of elevated H2S had no effect on overall bacterial diversity (p = 0.21), a large effect on community composition (25.8% of variation explained, p < 0.0001), and variable influence depending upon the group-whether fish, macroinvertebrates, or bacteria-being considered. For bacterial diversity, we recovered nine abundant operational taxonomic units (OTUs) that comprised a core H2S-rich stream microbiome in the region. Many H2S-associated OTUs were members of the Epsilonproteobacteria and Gammaproteobacteria, which both have been implicated in endosymbiotic relationships between sulfur-oxidizing bacteria and eukaryotes, suggesting the potential for symbioses that remain to be discovered in these habitats.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 26%
Student > Ph. D. Student 5 19%
Student > Master 5 19%
Student > Bachelor 2 7%
Student > Doctoral Student 2 7%
Other 2 7%
Unknown 4 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 37%
Biochemistry, Genetics and Molecular Biology 4 15%
Environmental Science 3 11%
Chemistry 2 7%
Business, Management and Accounting 1 4%
Other 2 7%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2019.
All research outputs
#2,672,938
of 25,153,613 outputs
Outputs from Microbial Ecology
#137
of 2,187 outputs
Outputs of similar age
#51,927
of 336,830 outputs
Outputs of similar age from Microbial Ecology
#5
of 36 outputs
Altmetric has tracked 25,153,613 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,187 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,830 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.