↓ Skip to main content

Plant host habitat and root exudates shape fungal diversity

Overview of attention for article published in Mycorrhiza, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
1 blog
twitter
6 X users

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
103 Mendeley
Title
Plant host habitat and root exudates shape fungal diversity
Published in
Mycorrhiza, August 2018
DOI 10.1007/s00572-018-0857-5
Pubmed ID
Authors

Mylène Hugoni, Patricia Luis, Julien Guyonnet, Feth el Zahar Haichar

Abstract

The rhizospheric microbiome is clearly affected by plant species and certain of their functional traits. These functional traits allow plants to adapt to their environmental conditions by acquiring or conserving nutrients, thus defining different ecological resource-use plant strategies. In the present study, we investigated whether plants with one of the two nutrient-use strategies (conservative versus exploitative) could influence fungal communities involved in soil organic matter degradation and root exudate assimilation, as well as those colonizing root tissues. We applied a DNA-based, stable-isotope probing (DNA-SIP) approach to four grass species distributed along a gradient of plant nutrient resource strategies, ranging from conservative to exploitative species, and analyzed their associated mycobiota composition using a fungal internal transcribed spacer (ITS) and Glomeromycotina 18S rRNA gene metabarcoding approach. Our results demonstrated that fungal taxa associated with exploitative and conservative plants could be separated into two general categories according to their location: generalists, which are broadly distributed among plants from each strategy and represent the core mycobiota of soil organic matter degraders, root exudate consumers in the root-adhering soil, and root colonizers; and specialists, which are locally abundant in one species and more specifically involved in soil organic matter degradation or root exudate assimilation on the root-adhering soil and the root tissues. Interestingly, for arbuscular mycorrhizal fungi analysis, all plant roots were mainly colonized by Glomus species, whereas an increased diversity of Glomeromycotina genera was observed for the exploitative plant species Dactylis glomerata.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 103 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 103 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 20%
Student > Ph. D. Student 17 17%
Student > Doctoral Student 13 13%
Student > Master 7 7%
Student > Bachelor 6 6%
Other 11 11%
Unknown 28 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 45 44%
Environmental Science 10 10%
Biochemistry, Genetics and Molecular Biology 6 6%
Engineering 3 3%
Business, Management and Accounting 1 <1%
Other 4 4%
Unknown 34 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2018.
All research outputs
#3,171,591
of 24,093,053 outputs
Outputs from Mycorrhiza
#56
of 674 outputs
Outputs of similar age
#62,786
of 334,094 outputs
Outputs of similar age from Mycorrhiza
#3
of 12 outputs
Altmetric has tracked 24,093,053 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 674 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,094 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.