↓ Skip to main content

A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species

Overview of attention for article published in Plant Methods, October 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
1 X user
patent
1 patent

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
65 Mendeley
Title
A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species
Published in
Plant Methods, October 2015
DOI 10.1186/s13007-015-0089-z
Pubmed ID
Authors

Katharina Kölling, Gavin M. George, Roland Künzli, Patrick Flütsch, Samuel C. Zeeman

Abstract

Photosynthetic assimilation of carbon is a defining feature of the plant kingdom. The fixation of large amounts of carbon dioxide supports the synthesis of carbohydrates, which make up the bulk of plant biomass. Exact measurements of carbon assimilation rates are therefore crucial due to their impact on the plants metabolism, growth and reproductive success. Commercially available single-leaf cuvettes allow the detailed analysis of many photosynthetic parameters, including gas exchange, of a selected leaf area. However, these cuvettes can be difficult to use with small herbaceous plants such as Arabidopsis thaliana or plants having delicate or textured leaves. Furthermore, data from single leaves can be difficult to scale-up for a plant shoot with a complex architecture and tissues in different physiological states. Therefore, we constructed a versatile system-EGES-1-to simultaneously measure gas exchange in the whole shoots of multiple individual plants. Our system was designed to be able record data continuously over several days. The EGES-1 system yielded comparable measurements for eight plants for up to 6 days in stable, physiologically realistic conditions. The chambers seals have negligible permeability to carbon dioxide and the system is designed so as to detect any bulk-flow air leaks. We show that the system can be used to monitor plant responses to changing environmental conditions, such as changes in illumination or stress treatments, and to compare plants with phenotypically severe mutations. By incorporating interchangeable lids, the system could be used to measure photosynthetic gas exchange in several genera such as Arabidopsis, Nicotiana, Pisum, Lotus and Mesembryanthemum. EGES-1 can be introduced into a variety of growth facilities and measure gas exchange in the shoots diverse plant species grown in different growth media. It is ideal for comparing photosynthetic carbon assimilation of wild-type and mutant plants and/or plants undergoing selected experimental treatments. The system can deliver valuable data for whole-plant growth studies and help understanding mutant phenotypes. Overall, the EGES-1 is complementary to the readily-available single leaf systems that focus more on the photosynthetic process in within the leaf lamina.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 64 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 23%
Researcher 11 17%
Student > Master 8 12%
Student > Bachelor 7 11%
Student > Doctoral Student 7 11%
Other 9 14%
Unknown 8 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 51%
Biochemistry, Genetics and Molecular Biology 8 12%
Environmental Science 5 8%
Physics and Astronomy 1 2%
Social Sciences 1 2%
Other 2 3%
Unknown 15 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2021.
All research outputs
#6,962,756
of 22,830,751 outputs
Outputs from Plant Methods
#449
of 1,082 outputs
Outputs of similar age
#86,174
of 280,050 outputs
Outputs of similar age from Plant Methods
#5
of 11 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 1,082 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,050 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.