↓ Skip to main content

Age‐related changes in murine myometrial transcript profile are mediated by exposure to the female sex hormones

Overview of attention for article published in Aging Cell, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Age‐related changes in murine myometrial transcript profile are mediated by exposure to the female sex hormones
Published in
Aging Cell, October 2015
DOI 10.1111/acel.12406
Pubmed ID
Authors

Hsu P Chong, Yolande Cordeaux, Yorain Sri Ranjan, Sylvia Richardson, Benoit Liquet, Gordon C S Smith, David Stephen Charnock-Jones

Abstract

In humans, the risk of operative first delivery increases linearly with maternal age. We previously hypothesized that prolonged, cyclical, prepregnancy exposure to estrogen and progesterone contributes to uterine aging. Here, we test this hypothesis. Myometrium was obtained from four groups of virgin mice: (i) 10- to 12-week- and 28- to 30-week-old mice; (ii) 10- to 12-week- and 38- to 40-week-old mice; (iii) 38-week-old mice that had an ovariectomy or sham operation early in life; (iv) 38-week-old mice that had been treated with progesterone or vehicle containing implants from 8 to 36 weeks. Transcript profiling was carried out using Affymetrix Gene ST 1.1 arrays, and data were normalized. We identified 60 differentially regulated transcripts associated with advancing age (group 1). We validated these changes in group 2 (P for overlap = 5.8 × 10(-46) ). Early ovariectomy prevented the age-related changes in myometrial transcript profile. Similarly, progesterone-mediated long-term ovarian suppression prevented the age-related changes in myometrial transcript profile. Interferon regulatory factor 7 (Irf7) mRNA was regulated by age and hormonal exposure, and was identified as a predicted regulator of the other differentially expressed transcripts by both promoter sequence and canonical pathway activation analysis (P = 8.47 × 10(-5) and P < 10(-10) , respectively). Immunohistochemistry demonstrated IRF7 in both mouse and human myometrium. We conclude the following: (i) Myometrial aging in mice is associated with reproducible changes in transcript profile; (ii) these changes can be prevented by interventions which inhibit cyclical changes in the female sex hormones; and (iii) IRF7 may be an important regulator of myometrial function and aging.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 33%
Student > Ph. D. Student 3 25%
Unspecified 2 17%
Student > Bachelor 1 8%
Student > Master 1 8%
Other 1 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 33%
Unspecified 2 17%
Medicine and Dentistry 2 17%
Agricultural and Biological Sciences 1 8%
Social Sciences 1 8%
Other 1 8%
Unknown 1 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2015.
All research outputs
#15,348,897
of 22,830,751 outputs
Outputs from Aging Cell
#1,902
of 2,103 outputs
Outputs of similar age
#165,880
of 283,225 outputs
Outputs of similar age from Aging Cell
#29
of 30 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,103 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.9. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,225 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.