↓ Skip to main content

Bioaccumulation of Highly Hydrophobic Chemicals by Lumbriculus variegatus

Overview of attention for article published in Archives of Environmental Contamination and Toxicology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
Title
Bioaccumulation of Highly Hydrophobic Chemicals by Lumbriculus variegatus
Published in
Archives of Environmental Contamination and Toxicology, August 2018
DOI 10.1007/s00244-018-0554-6
Pubmed ID
Authors

Lawrence P. Burkhard, Tylor Lahren, Terry L. Highland, James R. Hockett, David R. Mount, Teresa J. Norberg-King

Abstract

Bioaccumulation of highly hydrophobic chemicals (log KOW > 8) from contaminated sediments by Lumbriculus variegatus has been studied for relatively few chemicals, and the measured and model predicted biota-sediment accumulation factors (BSAFs) can differ by orders of magnitude. In the current study, sediment bioaccumulation tests with L. variegatus were performed on sediments dosed with chemicals having a wide range of predicted n-octanol/water partition coefficients (KOW; 106-1018), including some higher than most highly hydrophobic chemicals studied to date. The highly hydrophobic chemicals had biphasic elimination kinetics with compartments A and B having fast and slow elimination kinetics, respectively, and for compartment B, elimination followed first-order kinetics. For compartment A with fast elimination kinetics, the mechanism and its kinetic-order could not be determined. Steady-state BSAFs (kg organic carbon/kg lipid) of 0.015, 0.024, and 0.022 were derived for tetradecachloro-p-terphenyl, tetradecachloro-m-terphenyl, and octadecachloro-p-quaterphenyl, respectively. The high uncertainty in predicted KOWs for highly hydrophobic chemicals limited the comparison and evaluation of predicted BSAFs from the Arnot-Gobas food web model and BSAFs measured in this study. The results of this study point to the need to perform dietary assimilation efficiency studies with highly hydrophobic compounds to resolve uncertainties surrounding the estimation of their KOW and the need to understand mechanism and models for the biphasic elimination kinetics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 50%
Researcher 4 40%
Student > Doctoral Student 1 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 40%
Environmental Science 2 20%
Pharmacology, Toxicology and Pharmaceutical Science 1 10%
Physics and Astronomy 1 10%
Earth and Planetary Sciences 1 10%
Other 1 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2018.
All research outputs
#18,541,858
of 23,806,312 outputs
Outputs from Archives of Environmental Contamination and Toxicology
#1,565
of 2,093 outputs
Outputs of similar age
#242,882
of 336,235 outputs
Outputs of similar age from Archives of Environmental Contamination and Toxicology
#15
of 30 outputs
Altmetric has tracked 23,806,312 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,093 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,235 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.