↓ Skip to main content

Post-Transcriptional Gene Regulation

Overview of attention for book
Cover of 'Post-Transcriptional Gene Regulation'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Bioinformatics Resources for Post-transcriptional Regulation of Gene Expression.
  3. Altmetric Badge
    Chapter 2 Post-Transcriptional Gene Regulation
  4. Altmetric Badge
    Chapter 3 Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
  5. Altmetric Badge
    Chapter 4 Studying the Translatome with Polysome Profiling.
  6. Altmetric Badge
    Chapter 5 Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
  7. Altmetric Badge
    Chapter 6 Post-Transcriptional Gene Regulation
  8. Altmetric Badge
    Chapter 7 Use of the pBUTR Reporter System for Scalable Analysis of 3' UTR-Mediated Gene Regulation.
  9. Altmetric Badge
    Chapter 8 Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.
  10. Altmetric Badge
    Chapter 9 Identifying RBP Targets with RIP-seq.
  11. Altmetric Badge
    Chapter 10 PAR-CLIP: A Method for Transcriptome-Wide Identification of RNA Binding Protein Interaction Sites.
  12. Altmetric Badge
    Chapter 11 Profiling the Binding Sites of RNA-Binding Proteins with Nucleotide Resolution Using iCLIP.
  13. Altmetric Badge
    Chapter 12 A Pipeline for PAR-CLIP Data Analysis.
  14. Altmetric Badge
    Chapter 13 Capture and Identification of miRNA Targets by Biotin Pulldown and RNA-seq.
  15. Altmetric Badge
    Chapter 14 Post-Transcriptional Gene Regulation
  16. Altmetric Badge
    Chapter 15 Genome-Wide Analysis of A-to-I RNA Editing.
  17. Altmetric Badge
    Chapter 16 Nucleotide-Level Profiling of m5C RNA Methylation
  18. Altmetric Badge
    Chapter 17 Probing N (6)-methyladenosine (m(6)A) RNA Modification in Total RNA with SCARLET.
  19. Altmetric Badge
    Chapter 18 Genome-Wide Identification of Alternative Polyadenylation Events Using 3'T-Fill.
  20. Altmetric Badge
    Chapter 19 Genome-Wide Profiling of Alternative Translation Initiation Sites.
  21. Altmetric Badge
    Chapter 20 Post-Transcriptional Gene Regulation
  22. Altmetric Badge
    Chapter 21 Visualizing mRNA Dynamics in Live Neurons and Brain Tissues.
  23. Altmetric Badge
    Chapter 22 Single-Molecule Live-Cell Visualization of Pre-mRNA Splicing.
Overall attention for this book and its chapters
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Post-Transcriptional Gene Regulation
Published by
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3067-8
Pubmed ID
ISBNs
978-1-4939-3066-1, 978-1-4939-3067-8
Authors

Erik Dassi, Sibbritt, Tennille, Shafik, Andrew, Clark, Susan J, Preiss, Thomas, Dassi, Erik

Editors

Erik Dassi

Abstract

Mapping the position and quantifying the level of 5-methylcytosine (m(5)C) as a modification in different types of cellular RNA is an important objective in the emerging field of epitranscriptomics. Bisulfite conversion has long been the gold standard for detection of m(5)C in DNA but it can also be applied to RNA. Here, we detail methods for bisulfite treatment of RNA, locus-specific PCR amplification and detection of candidate sites by sequencing on the Illumina MiSeq platform.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 2%
Unknown 49 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 14%
Student > Bachelor 3 6%
Professor 2 4%
Student > Master 2 4%
Researcher 2 4%
Other 1 2%
Unknown 33 66%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 24%
Agricultural and Biological Sciences 5 10%
Neuroscience 1 2%
Unknown 32 64%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2021.
All research outputs
#4,279,115
of 26,017,215 outputs
Outputs from Methods in molecular biology
#1,041
of 14,425 outputs
Outputs of similar age
#66,567
of 405,194 outputs
Outputs of similar age from Methods in molecular biology
#150
of 1,468 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 14,425 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,194 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 1,468 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.