↓ Skip to main content

Xenopus

Overview of attention for book
Cover of 'Xenopus'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Husbandry, General Care, and Transportation of Xenopus laevis and Xenopus tropicalis
  3. Altmetric Badge
    Chapter 2 Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos
  4. Altmetric Badge
    Chapter 3 Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering
  5. Altmetric Badge
    Chapter 4 Targeted Genome Engineering in Xenopus Using the Transcription Activator-Like Effector Nuclease (TALEN) Technology
  6. Altmetric Badge
    Chapter 5 Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis
  7. Altmetric Badge
    Chapter 6 BATCH-GE: Analysis of NGS Data for Genome Editing Assessment
  8. Altmetric Badge
    Chapter 7 A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair
  9. Altmetric Badge
    Chapter 8 How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique
  10. Altmetric Badge
    Chapter 9 Targeted Electroporation in the CNS in Xenopus Embryos
  11. Altmetric Badge
    Chapter 10 Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina
  12. Altmetric Badge
    Chapter 11 Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors
  13. Altmetric Badge
    Chapter 12 CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
  14. Altmetric Badge
    Chapter 13 Quantitative Proteomics of Xenopus Embryos I, Sample Preparation
  15. Altmetric Badge
    Chapter 14 Quantitative Proteomics for Xenopus Embryos II, Data Analysis
  16. Altmetric Badge
    Chapter 15 Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System
  17. Altmetric Badge
    Chapter 16 X-FaCT: Xenopus-Fast Clearing Technique
  18. Altmetric Badge
    Chapter 17 Cell Cycle Analysis of the Embryonic Brain of Fluorescent Reporter Xenopus tropicalis by Flow Cytometry
  19. Altmetric Badge
    Chapter 18 Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis
  20. Altmetric Badge
    Chapter 19 Evaluating Blood Cell Populations in Xenopus Using Flow Cytometry and Differential Counts by Cytospin
  21. Altmetric Badge
    Chapter 20 Isolation and Culture of Amphibian (Xenopus laevis) Sub-Capsular Liver and Bone Marrow Cells
  22. Altmetric Badge
    Chapter 21 Isolation and Primary Culture Methods of Adult and Larval Myogenic Cells from Xenopus laevis
Attention for Chapter 6: BATCH-GE: Analysis of NGS Data for Genome Editing Assessment
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
BATCH-GE: Analysis of NGS Data for Genome Editing Assessment
Chapter number 6
Book title
Xenopus
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8784-9_6
Pubmed ID
Book ISBNs
978-1-4939-8783-2, 978-1-4939-8784-9
Authors

Wouter Steyaert, Annekatrien Boel, Paul Coucke, Andy Willaert

Abstract

Due to its simple nature, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technique is massively used nowadays to modify genomic loci in a wide range of model systems. The possibility to interrogate gene function on a genome-wide scale is revolutionizing fundamental life sciences and will lead to new clinical breakthroughs. Its strength is even more pronounced when it is used in tandem with next-generation sequencing (NGS). The high throughput and low cost cause NGS to be the method of choice for exploring CRISPR-Cas9 experimental results. To analyze the NGS reads from genome editing experiments only few bioinformatics tools are available. BATCH-GE is a flexible and easy-to-use tool, which is especially useful for dealing with large amounts of data. It detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 23%
Student > Ph. D. Student 2 15%
Professor 1 8%
Unspecified 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 4 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 23%
Agricultural and Biological Sciences 2 15%
Unspecified 1 8%
Chemical Engineering 1 8%
Unknown 6 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 September 2018.
All research outputs
#20,532,290
of 23,102,082 outputs
Outputs from Methods in molecular biology
#9,977
of 13,208 outputs
Outputs of similar age
#291,725
of 334,863 outputs
Outputs of similar age from Methods in molecular biology
#188
of 248 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,208 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,863 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.