↓ Skip to main content

Triticum urartu MTP1: its ability to maintain Zn2+ and Co2+ homeostasis and metal selectivity determinants

Overview of attention for article published in Plant Cell Reports, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
13 Mendeley
Title
Triticum urartu MTP1: its ability to maintain Zn2+ and Co2+ homeostasis and metal selectivity determinants
Published in
Plant Cell Reports, August 2018
DOI 10.1007/s00299-018-2336-z
Pubmed ID
Authors

Fan-Hong Wang, Kun Qiao, Shuang Liang, Si-Qi Tian, Yan-Bao Tian, Hong Wang, Tuan-Yao Chai

Abstract

TuMTP1 maintains Zn2+ and Co2+ homeostasis by sequestering excess Zn2+ and Co2+ into vacuoles. The mutations NSEDD/VTVTT in the His-rich loop and I119F in TMD3 of TuMTP1 restrict metal selectivity. Mineral nutrients, such as zinc (Zn) and cobalt (Co), are essential or beneficial for plants but can be toxic at elevated levels. Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. However, the determinants of substrate selectivity have not been clarified due to the diversity of MTP1 substrates in various plants. In this study, Triticum urartu MTP1 was characterized. When expressed in yeast, TuMTP1 conferred tolerance to Zn2+ and Co2+ but not Fe2+, Cu2+, Ni2+ or Cd2+ in solid and liquid culture and localized on the vacuolar membrane. Furthermore, TuMTP1-expressing yeast accumulated more Zn2+ and Co2+ when treated. TuMTP1 expression in T. urartu roots was significantly increased under Zn2+ and Co2+ stresses. Determinants of substrate selectivity were then examined through site-directed mutagenesis. The exchange of NSEDD with VTVTT in the His-rich loop of TuMTP1 restricted its metal selectivity to Zn2+, whereas the I119F mutation confined specificity to Co2+. The mutations H74, D78, H268 and D272 (in the Zn2+-binding site) and Leu322 (in the C-terminal Leu-zipper) partially or completely abolished the transport function of TuMTP1. These results show that TuMTP1 might sequester excess cytosolic Zn2+ and Co2+ into yeast vacuoles to maintain Zn2+ and Co2+ homeostasis. The NSEDD/VTVTT and I119F mutations are crucially important for restricting the substrate specificity of TuMTP1, and the Zn2+-binding site and Leu322 are essential for its ion selectivity and transport function. These results can be employed to change metal selectivity for biofortification or phytoremediation applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 31%
Student > Ph. D. Student 2 15%
Professor 1 8%
Student > Bachelor 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 4 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 38%
Biochemistry, Genetics and Molecular Biology 1 8%
Medicine and Dentistry 1 8%
Unknown 6 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2020.
All research outputs
#13,388,707
of 23,102,082 outputs
Outputs from Plant Cell Reports
#1,525
of 2,202 outputs
Outputs of similar age
#165,366
of 334,198 outputs
Outputs of similar age from Plant Cell Reports
#22
of 28 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,202 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,198 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.