↓ Skip to main content

Preconditioning with VEGF Enhances Angiogenic and Neuroprotective Effects of Bone Marrow Mononuclear Cell Transplantation in a Rat Model of Chronic Cerebral Hypoperfusion

Overview of attention for article published in Molecular Neurobiology, November 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user
patent
1 patent
wikipedia
1 Wikipedia page

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
26 Mendeley
Title
Preconditioning with VEGF Enhances Angiogenic and Neuroprotective Effects of Bone Marrow Mononuclear Cell Transplantation in a Rat Model of Chronic Cerebral Hypoperfusion
Published in
Molecular Neurobiology, November 2015
DOI 10.1007/s12035-015-9512-8
Pubmed ID
Authors

Jianping Wang, Xiaojie Fu, Lie Yu, Nan Li, Menghan Wang, Xi Liu, Di Zhang, Wei Han, Chenguang Zhou, Jian Wang

Abstract

Bone marrow mononuclear cell (BMMNC) transplantation is a promising therapy for brain ischemia. However, BMMNCs are few in number, and a limited time window is available during which they can penetrate the blood-brain barrier (BBB) and migrate to the brain. We investigated whether vascular endothelial growth factor (VEGF) can facilitate BMMNC migration into the ischemic brain and enhance their therapeutic effect in a rat model of chronic cerebral hypoperfusion. First, we assessed the impact of VEGF on the BBB of rats that had undergone permanent bilateral occlusion of the common carotid arteries (2VO). Then, we transplanted BMMNCs into 2VO rats pretreated with intracerebroventricular VEGF or vehicle. We examined cognitive function with the Morris water maze test, BMMNC migration by immunofluorescence analysis, and cytokine levels in the peripheral blood by enzyme-linked immunosorbent assay (ELISA). Angiogenesis and neural degeneration were evaluated by staining tissue with Ki67/lectin or Fluoro-Jade B. We found that at a dose of 0.2 μg/rat, VEGF significantly increased BBB permeability without causing brain edema in 2VO rats. VEGF + BMMNC-treated rats had more BMMNC migration in the ischemic brain, better learning and memory, greater proliferation of vessels, and fewer degenerating neurons than did BMMNC-treated rats. Pretreatment with VEGF receptor inhibitor SU5416 significantly decreased BMMNC migration and abolished the therapeutic effect of BMMNC transplantation. We conclude that preconditioning with an appropriate dose of VEGF can enhance the therapeutic efficacy of BMMNC transplantation in 2VO rats, possibly by facilitating BMMNC migration into the ischemic brain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Researcher 4 15%
Student > Bachelor 3 12%
Other 2 8%
Student > Doctoral Student 2 8%
Other 3 12%
Unknown 8 31%
Readers by discipline Count As %
Medicine and Dentistry 8 31%
Neuroscience 3 12%
Social Sciences 1 4%
Agricultural and Biological Sciences 1 4%
Engineering 1 4%
Other 0 0%
Unknown 12 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2021.
All research outputs
#1,891,589
of 22,832,057 outputs
Outputs from Molecular Neurobiology
#171
of 3,457 outputs
Outputs of similar age
#29,720
of 285,121 outputs
Outputs of similar age from Molecular Neurobiology
#6
of 129 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,457 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,121 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 129 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.