↓ Skip to main content

Rational Engineering Defines a Molecular Switch That Is Essential for Activity of Spider-Venom Peptides against the Analgesics Target NaV1.7

Overview of attention for article published in Molecular Pharmacology, October 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rational Engineering Defines a Molecular Switch That Is Essential for Activity of Spider-Venom Peptides against the Analgesics Target NaV1.7
Published in
Molecular Pharmacology, October 2015
DOI 10.1124/mol.115.100784
Pubmed ID
Authors

Julie K. Klint, Yanni K.-Y. Chin, Mehdi Mobli

Abstract

Many spider venom-peptides are known to modulate the activity of the voltage-gated sodium channel NaV1.7, which has emerged as a promising analgesic target. A class of spider venom-peptides (NaSpTx1) in particular have been found to potently inhibit NaV1.7 (nanomolar IC50), and shown to produce analgesic effects in animals. However, one member of this family, μ TRTX Hhn2b (Hhn2b), does not inhibit mammalian NaV channels expressed in dorsal root ganglia at concentrations up to 100 μM. This peptide is classified as a NaSpTx1 member by virtue of its cysteine spacing and sequence conservation over functionally important residues. Here, we have performed detailed structural and functional analyses of Hhn2b leading us to identify two non-pharmacophore residues that contribute to hNaV1.7 inhibition by non-overlapping mechanisms. These findings allowed us to produce a double mutant of Hhn2b that shows nanomolar inhibition of hNaV1.7. Traditional structure/function analysis did not provide sufficient resolution to identify the mechanism underlying the observed gain of function. However, by solving the high-resolution structure of both the wild type and mutant peptides using advanced multidimensional NMR experiments, we were able to uncover a previously unknown network of interactions that stabilize the pharmacophore region of this class of venom-peptides. We further monitored the lipid binding properties of the peptides and identified that one of the key amino acid substitutions also selectively modulates the binding of the peptide to anionic lipids. These results will further aid the development of peptide-based analgesics for the treatment of chronic pain.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Researcher 7 17%
Other 6 15%
Student > Master 6 15%
Student > Bachelor 4 10%
Other 7 17%
Unknown 3 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 24%
Biochemistry, Genetics and Molecular Biology 6 15%
Pharmacology, Toxicology and Pharmaceutical Science 5 12%
Chemistry 5 12%
Medicine and Dentistry 4 10%
Other 7 17%
Unknown 4 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2015.
All research outputs
#13,375,015
of 22,832,057 outputs
Outputs from Molecular Pharmacology
#2,512
of 3,279 outputs
Outputs of similar age
#128,671
of 274,922 outputs
Outputs of similar age from Molecular Pharmacology
#16
of 28 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,279 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,922 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.