↓ Skip to main content

Critical role of miR-155/FoxO1/ROS axis in the regulation of non-small cell lung carcinomas

Overview of attention for article published in Tumor Biology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
17 Mendeley
Title
Critical role of miR-155/FoxO1/ROS axis in the regulation of non-small cell lung carcinomas
Published in
Tumor Biology, November 2015
DOI 10.1007/s13277-015-4335-9
Pubmed ID
Authors

Likun Hou, Jian Chen, Yuhui Zheng, Chunyan Wu

Abstract

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung carcinomas (NSCLC) account for 85 % of lung cancer cases. Despite enormous achievement in the treatment of NSCLC, the molecular mechanisms underlying the pathogenesis are largely unknown. The current study was designed to evaluate the role of miR-155 in NSCLC cell proliferation and to explore the possible molecular mechanisms. We found that miR-155 expression was increased in NSCLC tissues and cell lines. The increase of miR-155 significantly increased A549 cell proliferation, decreased S phase cell population and increased G2/M phase cell population. Decrease of miR-155 expression markedly inhibited cell proliferation, increased S phase cell population, and decreased G2/M phase cell population. Increase of miR-155 significantly decreased forkhead box protein O1 (FoxO1) 3'UTR luciferase activity and expression and decrease of miR-155 notably increased FoxO1 expression. Overexpression of FoxO1 significantly inhibited miR-155-exerted increase of cell proliferation and G2/M cell population. Downregulation of FoxO1 by siRNAs significantly promoted cell proliferation, decreased S phase cell numbers, and increased G2/M cell population. Downregulation of FoxO1 markedly increased ROS level, as reflected by increased DHE staining. Moreover, when N-acetylcysteine was present, increase of cell proliferation induced by downregulation of FoxO1, and upregulation of miR-155 was significantly inhibited. In conclusion, we found that miR-155 promoted NSCLC cell proliferation through inhibition of FoxO1 and the subsequent increase of ROS generation. Our findings highlight miR-155/FoxO1/ROS axis as a novel therapeutic target for the inhibition of NSCLC growth.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 18%
Professor 2 12%
Student > Ph. D. Student 2 12%
Professor > Associate Professor 2 12%
Student > Master 1 6%
Other 3 18%
Unknown 4 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 29%
Medicine and Dentistry 3 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 12%
Agricultural and Biological Sciences 2 12%
Unspecified 1 6%
Other 0 0%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2015.
All research outputs
#15,349,796
of 22,832,057 outputs
Outputs from Tumor Biology
#1,050
of 2,622 outputs
Outputs of similar age
#166,455
of 284,824 outputs
Outputs of similar age from Tumor Biology
#73
of 310 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,622 research outputs from this source. They receive a mean Attention Score of 2.2. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,824 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 310 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.