↓ Skip to main content

Perioperative Cerebral Oxygenation Metabolism in Neonates with Hypoplastic Left Heart Syndrome or Transposition of the Great Arteries

Overview of attention for article published in Pediatric Cardiology, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
33 Mendeley
Title
Perioperative Cerebral Oxygenation Metabolism in Neonates with Hypoplastic Left Heart Syndrome or Transposition of the Great Arteries
Published in
Pediatric Cardiology, August 2018
DOI 10.1007/s00246-018-1952-2
Pubmed ID
Authors

Felix Neunhoeffer, Michael Hofbeck, Christian Schlensak, Martin Ulrich Schuhmann, Jörg Michel

Abstract

Optimizing oxygen delivery to the brain is one of the main goals in children with congenital heart defects after surgery. It has been shown that cerebral oxygen saturation (cSO2) is depressed within the first day after neonatal cardiopulmonary bypass surgery. However, peri-operative cerebral oxygen metabolism has not yet been assessed in previous studies. The aim of this study was to describe the peri-operative changes in cerebral oxygen metabolism in neonates with congenital heart defects following cardiopulmonary bypass surgery. Prospective observational cohort study. PICU of a tertiary referral center. Fourteen neonates with hypoplastic left heart syndrome (HLHS) undergoing Norwood procedure and 14 neonates with transposition of great arteries (TGA) undergoing arterial switch operation (ASO) were enrolled. Pediatric heart surgery. We measured non-invasively regional cSO2 and microperfusion (rcFlow) using tissue spectrometry and laser Doppler flowmetry before and after surgery. Cerebral fractional tissue oxygen extraction (cFTOE), the arterio-cerebral difference in oxygen content (acDO2) and approximated cerebral metabolic rate of oxygen (aCMRO2) were calculated. According to the postsurgical hemodynamics, arterial saturation (aSO2) normalized immediately after surgery in the TGA group, whereas HLHS patients still were cyanotic. cSO2 significantly increased in TGA group over 48 h after ASO (p = 0.004) and was significantly higher compared to HLHS group after Norwood procedure. cFTOE as a risk marker for brain injury was elevated before surgery (TGA group 0.37 ± 0.10, HLHS group 0.42 ± 0.12) and showed a slight decrease after ASO (p = 0.35) but significantly decreased in patients after Norwood procedure (p = 0.02). Preo-peratively, acDO2 was significantly higher in patients with HLHS compared to patients with TGA (7.7 ± 2.5 vs. 5.2 ± 1.6 ml/dl, p = 0.005), but normalized in the posto-perative course. Before surgery, the aCMRO2 was slightly higher in the HLHS group (5.1 ± 1.5 vs. 3.9 ± 2.5 AU, p = 0.14), but significantly decreased after Norwood procedure (- 1.6 AU, p = 0.009). There was no difference in rcFlow between both groups and between the points in time prior and after surgery. Neonates undergoing cardiac surgery suffer from peri-operative changes in hemodynamics and cerebral hypoxemic stress. The cerebral oxygen metabolism seems to be more affected in cyanotic children with functionally univentricular hearts compared to post-operative acyanotic patients. Additional stress factors must be avoided to achieve the best possible neurological outcome.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 15%
Student > Master 4 12%
Researcher 3 9%
Student > Postgraduate 3 9%
Librarian 2 6%
Other 4 12%
Unknown 12 36%
Readers by discipline Count As %
Medicine and Dentistry 12 36%
Engineering 2 6%
Psychology 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Materials Science 1 3%
Other 1 3%
Unknown 14 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2018.
All research outputs
#18,648,325
of 23,102,082 outputs
Outputs from Pediatric Cardiology
#867
of 1,418 outputs
Outputs of similar age
#256,807
of 334,310 outputs
Outputs of similar age from Pediatric Cardiology
#17
of 38 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,418 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,310 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.