↓ Skip to main content

Comparison of left ventricular manual versus automated derived longitudinal strain: implications for clinical practice and research

Overview of attention for article published in The International Journal of Cardiovascular Imaging, November 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
27 Mendeley
Title
Comparison of left ventricular manual versus automated derived longitudinal strain: implications for clinical practice and research
Published in
The International Journal of Cardiovascular Imaging, November 2015
DOI 10.1007/s10554-015-0804-x
Pubmed ID
Authors

Yukari Kobayashi, Miyuki Ariyama, Yuhei Kobayashi, Genevieve Giraldeau, Dominik Fleischman, Mirta Kozelj, Bojan Vrtovec, Euan Ashley, Tatiana Kuznetsova, Ingela Schnittger, David Liang, Francois Haddad

Abstract

Systolic global longitudinal strain (GLS) is emerging as a useful metric of ventricular function in heart failure and usually assessed using post-processing software. The purpose of this study was to investigate whether longitudinal strain (LS) derived using manual-tracings of ventricular lengths (manual-LS) can be reliable and time efficient when compared to LS obtained by post-processing software (software-LS). Apical 4-chamber view images were retrospectively examined in 50 healthy controls, 100 patients with dilated cardiomyopathy (DCM), and 100 with hypertrophic cardiomyopathy (HCM). We measured endocardial and mid-wall manual-LS and software-LS, using peak of average regional curve [software-LS(a)] and global ventricular lengths [software-LS(l)] according to definition of Lagragian strain. We compared manual-LS and software-LS by using Bland-Altman plot and coefficient of variation (COV). In addition, test-retest was also performed for further assessment of variability in measurements. While manual-LS was obtained in all subjects, software-LS could be obtained in 238 subjects (95 %). The time spent for obtaining manual-LS was significantly shorter than for the software-LS (94 ± 39 s vs. 141 ± 79 s, P < 0.001). Overall, manual-LS had an excellent correlation with both software-LS (a) (R(2) = 0.93, P < 0.001) and software-LS(l) (R(2) = 0.84, P < 0.001). The bias (95 %CI) between endocardial manual-LS and software-LS(a) was 0.4 % [-2.8, 3.6 %] in absolute and 3.5 % [-17.0, 24.0 %] in relative difference while it was 0.4 % [-2.5, 3.3 %] and 3.4 % [-16.2, 23.1 %], respectively with software-LS(l). Mid-wall manual-LS and mid-wall software-LS(a) also had good agreement [a bias (95 % CI) for absolute value of 0.1 % [-2.1, 2.5 %] in HCM, and 0.2 % [-2.2, 2.6 %] in controls]. The COV for manual and software derived LS were below 6 %. Test-retest showed good variability for both methods (COVs were 5.8 and 4.7 for endocardial and mid-wall manual-LS, and 4.6 and 4.9 for endocardial and mid-wall software-LS(a), respectively. Manual-LS appears to be as reproducible as software-LS; this may be of value especially when global strain is the metric of interest.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Postgraduate 5 19%
Other 4 15%
Professor > Associate Professor 3 11%
Researcher 2 7%
Other 3 11%
Unknown 5 19%
Readers by discipline Count As %
Medicine and Dentistry 12 44%
Computer Science 2 7%
Agricultural and Biological Sciences 1 4%
Psychology 1 4%
Engineering 1 4%
Other 0 0%
Unknown 10 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2015.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from The International Journal of Cardiovascular Imaging
#1,116
of 2,012 outputs
Outputs of similar age
#272,565
of 392,657 outputs
Outputs of similar age from The International Journal of Cardiovascular Imaging
#13
of 39 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,012 research outputs from this source. They receive a mean Attention Score of 2.3. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 392,657 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.