↓ Skip to main content

Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead smelter near Jiyuan, China

Overview of attention for article published in Environmental Science and Pollution Research, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
13 Mendeley
Title
Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead smelter near Jiyuan, China
Published in
Environmental Science and Pollution Research, September 2018
DOI 10.1007/s11356-018-3126-4
Pubmed ID
Authors

Weiqin Xing, Enze Cao, Kirk G. Scheckel, Xiaoming Bai, Liping Li

Abstract

Higher concentrations of Pb and Cd in wheat grains harvested in several lead-smelting-polluted areas in northern China have been reported. This field experiment was conducted to investigate the effect of phosphate amendment and Zn foliar application on the accumulation of Pb and Cd in wheat grains grown in a lead-smelting impacted area in Jiyuan in northern China. The soil (total Pb and Cd are 261 and 2.65 mg kg-1, respectively) was amended with superphosphate at P:Pb ratios (mol:mol) of 1.90 or 2.57 either during wheat (Triticum aestivum L.) planting or a split of 60% of the phosphate applied at planting, with remaining 40% applied at the jointing stage. Zn was sprayed on the canopy of the wheat plants at the jointing stage. The phosphate amendment resulted in lower DTPA (diethylene triamine pentaacetic acid)-extractable Pb (1.39-10.7% lower than the control) and Cd (0.040-7.12%) in the soil. No significant effect of split application of phosphate was found on Pb and Cd availability in soil; however, higher rates of P resulted in lower Pb and Cd availabilities in the soil. Grain Pb (5.41-21.5% lower than the control), Cd (3.62-6.76%), and Zn (4.29-9.02%) concentrations were negatively affected by the phosphate application, with higher rates of phosphate resulting in lower grain heavy metal concentrations. Foliar application had no statistically significant influence on Pb and Cd concentrations in the grain (p > 0.05). Although Pb and Cd concentrations in wheat grains were reduced by the phosphate application, their concentrations were still much higher than the maximum permissible concentrations for wheat in the national standards of China. The results suggest that it is feasible to reduce wheat grain concentrations of Pb and Cd in Pb-smelting-polluted areas in northern China by soil application of superphosphate; however, the split application of the phosphate and the foliar application of Zn compounds do not have substantial impact on reducing accumulation of Pb and Cd in the wheat grains.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Student > Doctoral Student 2 15%
Researcher 1 8%
Librarian 1 8%
Unknown 6 46%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 31%
Environmental Science 1 8%
Unknown 8 62%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2018.
All research outputs
#21,420,714
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#7,000
of 9,883 outputs
Outputs of similar age
#296,856
of 339,352 outputs
Outputs of similar age from Environmental Science and Pollution Research
#134
of 204 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,352 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 204 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.