↓ Skip to main content

Mitochonic Acid 5 (MA-5), a Derivative of the Plant Hormone Indole-3-Acetic Acid, Improves Survival of Fibroblasts from Patients with Mitochondrial Diseases

Overview of attention for article published in Tohoku Journal of Experimental Medicine, January 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#35 of 1,106)
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

twitter
14 X users
patent
10 patents

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mitochonic Acid 5 (MA-5), a Derivative of the Plant Hormone Indole-3-Acetic Acid, Improves Survival of Fibroblasts from Patients with Mitochondrial Diseases
Published in
Tohoku Journal of Experimental Medicine, January 2015
DOI 10.1620/tjem.236.225
Pubmed ID
Authors

Takehiro Suzuki, Hiroaki Yamaguchi, Motoi Kikusato, Tetsuro Matsuhashi, Akihiro Matsuo, Takeya Sato, Yuki Oba, Shun Watanabe, Daichi Minaki, Daisuke Saigusa, Hiroko Shimbo, Nobuyoshi Mori, Eikan Mishima, Hisato Shima, Yasutoshi Akiyama, Yoichi Takeuchi, Akinori Yuri, Koichi Kikuchi, Takafumi Toyohara, Chitose Suzuki, Masahiro Kohzuki, Jun-ichi Anzai, Nariyasu Mano, Shigeo Kure, Teruyuki Yanagisawa, Yoshihisa Tomioka, Masaaki Toyomizu, Sadayoshi Ito, Hitoshi Osaka, Ken-ichiro Hayashi, Takaaki Abe

Abstract

Mitochondria are key organelles implicated in a variety of processes related to energy and free radical generation, the regulation of apoptosis, and various signaling pathways. Mitochondrial dysfunction increases cellular oxidative stress and depletes ATP in a variety of inherited mitochondrial diseases and also in many other metabolic and neurodegenerative diseases. Mitochondrial diseases are characterized by the dysfunction of the mitochondrial respiratory chain, caused by mutations in the genes encoded by either nuclear DNA or mitochondrial DNA. We have hypothesized that chemicals that increase the cellular ATP levels may ameliorate the mitochondrial dysfunction seen in mitochondrial diseases. To search for the potential drugs for mitochondrial diseases, we screened an in-house chemical library of indole-3-acetic-acid analogs by measuring the cellular ATP levels in Hep3B human hepatocellular carcinoma cells. We have thus identified mitochonic acid 5 (MA-5), 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid, as a potential drug for enhancing ATP production. MA-5 is a newly synthesized derivative of the plant hormone, indole-3-acetic acid. Importantly, MA-5 improved the survival of fibroblasts established from patients with mitochondrial diseases under the stress-induced condition, including Leigh syndrome, MELAS (myopathy encephalopathy lactic acidosis and stroke-like episodes), Leber's hereditary optic neuropathy, and Kearns-Sayre syndrome. The improved survival was associated with the increased cellular ATP levels. Moreover, MA-5 increased the survival of mitochondrial disease fibroblasts even under the inhibition of the oxidative phosphorylation or the electron transport chain. These data suggest that MA-5 could be a therapeutic drug for mitochondrial diseases that exerts its effect in a manner different from anti-oxidant therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 1%
Switzerland 1 1%
Unknown 78 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 14%
Student > Bachelor 8 10%
Professor > Associate Professor 8 10%
Professor 5 6%
Student > Master 5 6%
Other 13 16%
Unknown 30 38%
Readers by discipline Count As %
Medicine and Dentistry 12 15%
Agricultural and Biological Sciences 9 11%
Biochemistry, Genetics and Molecular Biology 7 9%
Pharmacology, Toxicology and Pharmaceutical Science 6 8%
Chemistry 6 8%
Other 8 10%
Unknown 32 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2023.
All research outputs
#2,147,112
of 25,608,265 outputs
Outputs from Tohoku Journal of Experimental Medicine
#35
of 1,106 outputs
Outputs of similar age
#28,446
of 360,799 outputs
Outputs of similar age from Tohoku Journal of Experimental Medicine
#2
of 70 outputs
Altmetric has tracked 25,608,265 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,106 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,799 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.