↓ Skip to main content

Evaluation of an adaptive detector collimation for prospectively ECG-triggered coronary CT angiography with third-generation dual-source CT

Overview of attention for article published in European Radiology, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
13 Mendeley
Title
Evaluation of an adaptive detector collimation for prospectively ECG-triggered coronary CT angiography with third-generation dual-source CT
Published in
European Radiology, December 2017
DOI 10.1007/s00330-017-5177-1
Pubmed ID
Authors

Michael Messerli, Patricia Dewes, Jan-Erik Scholtz, Christophe Arendt, Simon Wildermuth, Thomas J. Vogl, Ralf W. Bauer

Abstract

To investigate the impact of an adaptive detector collimation on the dose parameters and accurateness of scan length adaption at prospectively ECG-triggered sequential cardiac CT with a wide-detector third-generation dual-source CT. Ideal scan lengths for human hearts were retrospectively derived from 103 triple-rule-out examinations. These measures were entered into the new scanner operated in prospectively ECG-triggered sequential cardiac scan mode with three different detector settings: (1) adaptive collimation, (2) fixed 64 × 0.6-mm collimation, and (3) fixed 96 × 0.6-mm collimation. Differences in effective scan length and deviation from the ideal scan length and dose parameters (CTDIvol, DLP) were documented. The ideal cardiac scan length could be matched by the adaptive collimation in every case while the mean scanned length was longer by 15.4% with the 64 × 0.6 mm and by 27.2% with the fixed 96 × 0.6-mm collimation. While the DLP was almost identical between the adaptive and the 64 × 0.6-mm collimation (83 vs. 89 mGycm at 120 kV), it was 62.7% higher with the 96 × 0.6-mm collimation (135 mGycm), p < 0.001. The adaptive detector collimation for prospectively ECG-triggered sequential acquisition allows for adjusting the scan length as accurate as this can only be achieved with a spiral acquisition. This technique allows keeping patient exposure low where patient dose would significantly increase with the traditional step-and-shoot mode. • Adaptive detector collimation allows keeping patient exposure low in cardiac CT. • With novel detectors the desired scan length can be accurately matched. • Differences in detector settings may cause 62.7% of excessive dose.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 23%
Researcher 2 15%
Student > Ph. D. Student 1 8%
Other 1 8%
Unknown 6 46%
Readers by discipline Count As %
Medicine and Dentistry 4 31%
Biochemistry, Genetics and Molecular Biology 1 8%
Materials Science 1 8%
Nursing and Health Professions 1 8%
Unknown 6 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2018.
All research outputs
#20,533,292
of 23,103,436 outputs
Outputs from European Radiology
#3,366
of 4,185 outputs
Outputs of similar age
#375,564
of 440,462 outputs
Outputs of similar age from European Radiology
#57
of 68 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,185 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,462 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.