↓ Skip to main content

Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway

Overview of attention for article published in Tumor Biology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
17 Mendeley
Title
Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway
Published in
Tumor Biology, November 2015
DOI 10.1007/s13277-015-4348-4
Pubmed ID
Authors

Maoxi Liu, Zhongxue Fu, Xingye Wu, Kunli Du, Shouru Zhang, Li Zeng

Abstract

Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 35%
Student > Master 4 24%
Student > Bachelor 2 12%
Professor 1 6%
Other 1 6%
Other 1 6%
Unknown 2 12%
Readers by discipline Count As %
Medicine and Dentistry 7 41%
Biochemistry, Genetics and Molecular Biology 5 29%
Agricultural and Biological Sciences 2 12%
Unknown 3 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2015.
All research outputs
#15,351,145
of 22,834,308 outputs
Outputs from Tumor Biology
#1,050
of 2,622 outputs
Outputs of similar age
#227,035
of 387,438 outputs
Outputs of similar age from Tumor Biology
#71
of 318 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,622 research outputs from this source. They receive a mean Attention Score of 2.2. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,438 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 318 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.