↓ Skip to main content

A synthetic standard for the analysis of carbon isotopes of carbon in silicates, and the observation of a significant water-associated matrix effect

Overview of attention for article published in Geochemical Transactions, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
16 Mendeley
Title
A synthetic standard for the analysis of carbon isotopes of carbon in silicates, and the observation of a significant water-associated matrix effect
Published in
Geochemical Transactions, September 2015
DOI 10.1186/s12932-015-0029-x
Pubmed ID
Authors

Christopher H. House

Abstract

Due to the biogeochemical fractionation of isotopes, organic material can be heterogeneous at the microscale. Because this heterogentiy preserves in the rock record, the microscale measurement of carbon isotopes is an important frontier of geobiology. Such analyses via secondary ion mass spectrometry (SIMS) have been, however, held back by the lack of an appropriate homogeneous synthetic standard that can be shared between laboratories. Such a standard would need to yield a carbon signal intensity within the same instrument dynamic range as that found for typical rocks, exhibit minimal matrix effects under typical SIMS conditions, and be widely available. In this work, five possible standards were tested with repeated δ(13)C ion microprobe measurements against the PPRG #215-1 Precambrian chert that has been used as a working standard for these types of analyses by several laboratories. Results showed that silica powder, pressed, and bonded with Ceramacast 905 produced a useful synthetic standard. The material produced has a secondary ion carbon yield of only about 15× that of the PPRG #215-1 organic-rich chert. Finally, the material, once dried sufficiently, did not demonstrate an observable matrix effect when the carbon isotopes were measured. Another similar material (silica nanopowder, pressed, and bonded with Aremco-Bond 526N) appears to have retained its hydration after a substantial effect to dry it. The isotopes measurements of this more hydrated material showed a significant matrix effect that was diminished by intense pre-sputtering. The results indicate water can affect SIMS carbon isotopic measurements, and an intense beam reduces the effect. A hydrated standard might be useful to monitor the effect. A suitable artificial standard for SIMS isotopic measurements of organic material in rocks has been found, and it will allow an acute growth in both the quantity and quality of studies of ancient carbon at the microscale. Also, this work has revealed a novel water-associated matrix effect for carbon isotopes. This newly revealed matrix effect is important because it might have misled previous research. The effect could lead to increased observed heterogeneity of partially hydrated samples and/or produced systematic differences between natural targets and the standards used.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Slovenia 1 6%
Unknown 15 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 25%
Student > Master 4 25%
Student > Bachelor 2 13%
Researcher 2 13%
Student > Doctoral Student 1 6%
Other 1 6%
Unknown 2 13%
Readers by discipline Count As %
Earth and Planetary Sciences 7 44%
Environmental Science 3 19%
Agricultural and Biological Sciences 1 6%
Chemistry 1 6%
Engineering 1 6%
Other 0 0%
Unknown 3 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2015.
All research outputs
#18,431,664
of 22,834,308 outputs
Outputs from Geochemical Transactions
#60
of 81 outputs
Outputs of similar age
#193,756
of 268,883 outputs
Outputs of similar age from Geochemical Transactions
#3
of 6 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 81 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 2nd percentile – i.e., 2% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,883 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.