↓ Skip to main content

Proton Transfer Accounting for Anomalous Collision-Induced Dissociation of Proton-Bound Hoogsteen Base Pair of Cytosine and Guanine

Overview of attention for article published in Journal of the American Society for Mass Spectrometry, September 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
8 Mendeley
Title
Proton Transfer Accounting for Anomalous Collision-Induced Dissociation of Proton-Bound Hoogsteen Base Pair of Cytosine and Guanine
Published in
Journal of the American Society for Mass Spectrometry, September 2018
DOI 10.1007/s13361-018-2060-5
Pubmed ID
Authors

Jeong Ju Park, Choong Sik Lee, Sang Yun Han

Abstract

To understand the anomalous collision-induced dissociation (CID) behavior of the proton-bound Hoogsteen base pair of cytosine (C) and guanine (G), C:H+∙∙∙G, we investigated CID of a homologue series of proton-bound heterodimers of C, 1-methylcytosine, and 5-methylcytosine with G as a common base partner. The CID experiments were performed in an energy-resolved way (ER-CID) under both multiple and near-single collision conditions. The relative stabilities of the protonated complexes examined by ER-CID suggested that the proton-bound complexes produced by electrospray ionization in this study are proton-bound Hoogsteen base pairs. On the other hand, in contrast to the other base pairs, CID of C:H+∙∙∙G exhibited more abundant productions of C:H+, the fragment protonated on the moiety with a smaller proton affinity, than that of G:H+. This appeared to contradict general prediction based on the kinetic method. However, further theoretical exploration of potential energy surfaces found that there can be facile proton transfers in the proton-bound Hoogsteen base pairs during the CID process, which makes the process accessible to an additional product state of O-protonated C for C:H+ fragments. The presence of an additional dissociation channel, which in other words corresponds to twofold degeneracy in the transition state leading to C:H+ fragments, effectively doubles the apparent reaction rate for production of C:H+. In this way, the process gives rise to the anomaly, the observed pronounced formation of C:H+ in the CID of the proton-bound Hoogsteen base pair, C:H+∙∙∙G. Graphical Abstract ᅟ.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 25%
Student > Bachelor 1 13%
Student > Doctoral Student 1 13%
Student > Master 1 13%
Researcher 1 13%
Other 0 0%
Unknown 2 25%
Readers by discipline Count As %
Chemistry 5 63%
Computer Science 1 13%
Unknown 2 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2018.
All research outputs
#20,663,600
of 25,385,509 outputs
Outputs from Journal of the American Society for Mass Spectrometry
#3,086
of 3,835 outputs
Outputs of similar age
#270,815
of 347,952 outputs
Outputs of similar age from Journal of the American Society for Mass Spectrometry
#37
of 54 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,835 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,952 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.