↓ Skip to main content

Effect of Soil Moisture Regimes on Growth and Seed Production of Two Australian Biotypes of Sisymbrium thellungii O. E. Schulz

Overview of attention for article published in Frontiers in Plant Science, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of Soil Moisture Regimes on Growth and Seed Production of Two Australian Biotypes of Sisymbrium thellungii O. E. Schulz
Published in
Frontiers in Plant Science, August 2018
DOI 10.3389/fpls.2018.01241
Pubmed ID
Authors

Gulshan Mahajan, Barbara George-Jaeggli, Michael Walsh, Bhagirath S. Chauhan

Abstract

Sisymbrium thellungii O. E. Schulz is an emerging problematic weed in the northern grain region of Australia. Several different biotypes exist in this region but not all biotypes exhibit the same growth and reproduction behavior. This might be due to local adaptation to the different agro-ecosystems, however, information on this aspect is limited. To determine whether adaptation to water stress was a factor in biotype demographic growth and reproduction behavior, we evaluated the physiological and biochemical responses of two Australian S. thellungii biotypes, selected from high (Dalby) and medium (St. George) rainfall areas, to different pot soil moisture levels corresponding to 100, 75, 50, and 25% of soil water holding capacity (WHC). Averaged across moisture levels, the St. George biotype (medium rainfall area) had 89% greater biomass and produced 321% more seeds than the Dalby biotype. The St. George biotype was less affected by increased levels of water stress than the Dalby biotype. The Dalby biotype produced 4,787 seeds plant-1 at 100% WHC and only 28 seeds plant-1 at 25% WHC. On the other hand, the St. George biotype produced 4,061 seeds plant-1 at 25% WHC and its seed production at 100% WHC was 9,834 seeds plant-1. On a per leaf area basis and averaged across all moisture levels, the St. George had significantly lower net carbon assimilation compared with the Dalby biotype, accompanied by a trend for lower stomatal conductance, which might indicate an adaptation to water stress. Across the moisture levels, the St. George biotype had higher phenolics and total soluble sugar, but free proline content was higher in the Dalby biotype compared with the St. George biotype. Like total soluble sugar, proline content increased with water stress in both biotypes, but it increased to a greater extent in the Dalby biotype, particularly at the 25% of WHC. Branching, flowering and maturity occurred earlier in the St. George biotype compared with the Dalby biotype, indicating relatively faster growth of the St. George biotype, which again seems to be an adaptation to water-limited environments. In conclusion, the St. George biotype of S. thellungii had higher reproductive capacity than the Dalby biotype across all the moisture regimes, which suggests greater invasiveness. Overall, the large size and rapid growth of the S. thellungii population from the medium rainfall area, together with its physiological response to water stress and its ability to maintain seed production in dry conditions, may enable this biotype to become widespread in Australia.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 21%
Researcher 6 21%
Student > Master 2 7%
Student > Ph. D. Student 1 3%
Unspecified 1 3%
Other 2 7%
Unknown 11 38%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 38%
Environmental Science 2 7%
Unspecified 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Psychology 1 3%
Other 2 7%
Unknown 11 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2018.
All research outputs
#19,017,658
of 23,577,654 outputs
Outputs from Frontiers in Plant Science
#14,745
of 21,632 outputs
Outputs of similar age
#258,956
of 335,942 outputs
Outputs of similar age from Frontiers in Plant Science
#352
of 448 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,632 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,942 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 448 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.