↓ Skip to main content

Patterns of Grey Matter Atrophy at Different Stages of Parkinson’s and Alzheimer’s Diseases and Relation to Cognition

Overview of attention for article published in Brain Topography, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
99 Mendeley
Title
Patterns of Grey Matter Atrophy at Different Stages of Parkinson’s and Alzheimer’s Diseases and Relation to Cognition
Published in
Brain Topography, September 2018
DOI 10.1007/s10548-018-0675-2
Pubmed ID
Authors

Jonas Kunst, Radek Marecek, Patricia Klobusiakova, Zuzana Balazova, Lubomira Anderkova, Nela Nemcova-Elfmarkova, Irena Rektorova

Abstract

Using MRI, a characteristic pattern of grey matter (GM) atrophy has been described in the early stages of Alzheimer's disease (AD); GM patterns at different stages of Parkinson's disease (PD) have been inconclusive. Few studies have directly compared structural changes in groups with mild cognitive impairment (MCI) caused by different pathologies (AD, PD). We used several analytical methods to determine GM changes at different stages of both PD and AD. We also evaluated associations between GM changes and cognitive measurements. Altogether 144 subjects were evaluated: PD with normal cognition (PD-NC; n = 23), PD with MCI (PD-MCI; n = 24), amnestic MCI (aMCI; n = 27), AD (n = 12), and age-matched healthy controls (HC; n = 58). All subjects underwent structural MRI and cognitive examination. GM volumes were analysed using two different techniques: voxel-based morphometry (VBM) and source-based morphometry (SBM), which is a multivariate method. In addition, cortical thickness (CT) was evaluated to assess between-group differences in GM. The cognitive domain z-scores were correlated with GM changes in individual patient groups. GM atrophy in the anterior and posterior cingulate, as measured by VBM, in the temporo-fronto-parietal component, as measured by SBM, and in the posterior cortical regions as well as in the anterior cingulate and frontal region, as measured by CT, differentiated aMCI from HC. Major hippocampal and temporal lobe atrophy (VBM, SBM) and to some extent occipital atrophy (SBM) differentiated AD from aMCI and from HC. Correlations with cognitive deficits were present only in the AD group. PD-MCI showed greater GM atrophy than PD-NC in the orbitofrontal regions (VBM), which was related to memory z-scores, and in the left superior parietal lobule (CT); more widespread limbic and fronto-parieto-occipital neocortical atrophy (all methods) differentiated this group from HC. Only CT revealed subtle GM atrophy in the anterior cingulate, precuneus, and temporal neocortex in PD-NC as compared to HC. None of the methods differentiated PD-MCI from aMCI. Both MCI groups showed distinct limbic and fronto-temporo-parietal neocortical atrophy compared to HC with no specific between-group differences. AD subjects displayed a typical pattern of major temporal lobe atrophy which was associated with deficits in all cognitive domains. VBM and CT were more sensitive than SBM in identifying frontal and posterior cortical atrophy in PD-MCI as compared to PD-NC. Our data support the notion that the results of studies using different analytical methods cannot be compared directly. Only CT measures revealed some subtle differences between HC and PD-NC.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 99 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 99 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 13%
Student > Bachelor 13 13%
Researcher 9 9%
Student > Master 9 9%
Other 7 7%
Other 14 14%
Unknown 34 34%
Readers by discipline Count As %
Neuroscience 21 21%
Medicine and Dentistry 15 15%
Psychology 7 7%
Biochemistry, Genetics and Molecular Biology 3 3%
Computer Science 2 2%
Other 8 8%
Unknown 43 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2018.
All research outputs
#4,244,144
of 23,103,436 outputs
Outputs from Brain Topography
#68
of 486 outputs
Outputs of similar age
#83,771
of 337,559 outputs
Outputs of similar age from Brain Topography
#1
of 11 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 486 research outputs from this source. They receive a mean Attention Score of 4.6. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,559 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.