↓ Skip to main content

Population aging, macroeconomic changes, and global diabetes prevalence, 1990–2008

Overview of attention for article published in Population Health Metrics, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
36 Mendeley
Title
Population aging, macroeconomic changes, and global diabetes prevalence, 1990–2008
Published in
Population Health Metrics, December 2015
DOI 10.1186/s12963-015-0065-x
Pubmed ID
Authors

Nikkil Sudharsanan, Mohammed K. Ali, Neil K. Mehta, K M Venkat Narayan

Abstract

Diabetes is an important contributor to global morbidity and mortality. The contributions of population aging and macroeconomic changes to the growth in diabetes prevalence over the past 20 years are unclear. We used cross-sectional data on age- and sex-specific counts of people with diabetes by country, national population estimates, and country-specific macroeconomic variables for the years 1990, 2000, and 2008. Decomposition analysis was performed to quantify the contribution of population aging to the change in global diabetes prevalence between 1990 and 2008. Next, age-standardization was used to estimate the contribution of age composition to differences in diabetes prevalence between high-income (HIC) and low-to-middle-income countries (LMICs). Finally, we used non-parametric correlation and multivariate first-difference regression estimates to examine the relationship between macroeconomic changes and the change in diabetes prevalence between 1990 and 2008. Globally, diabetes prevalence grew by two percentage points between 1990 (7.4 %) and 2008 (9.4 %). Population aging was responsible for 19 % of the growth, with 81 % attributable to increases in the age-specific prevalences. In both LMICs and HICs, about half the growth in age-specific prevalences was from increasing levels of diabetes between ages 45-65 (51 % in HICs and 46 % in LMICs). After age-standardization, the difference in the prevalence of diabetes between LMICs and HICs was larger (1.9 % point difference in 1990; 1.5 % point difference in 2008). We found no evidence that macroeconomic changes were associated with the growth in diabetes prevalence. Population aging explains a minority of the recent growth in global diabetes prevalence. The increase in global diabetes between 1990 and 2008 was primarily due to an increase in the prevalence of diabetes at ages 45-65. We do not find evidence that basic indicators of economic growth, development, globalization, or urbanization were related to rising levels of diabetes between 1990 and 2008.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Russia 1 3%
Belgium 1 3%
Unknown 34 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Postgraduate 5 14%
Student > Master 5 14%
Student > Doctoral Student 4 11%
Student > Ph. D. Student 4 11%
Other 5 14%
Unknown 5 14%
Readers by discipline Count As %
Medicine and Dentistry 13 36%
Social Sciences 3 8%
Biochemistry, Genetics and Molecular Biology 2 6%
Agricultural and Biological Sciences 2 6%
Environmental Science 1 3%
Other 7 19%
Unknown 8 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2015.
All research outputs
#13,757,736
of 22,834,308 outputs
Outputs from Population Health Metrics
#270
of 392 outputs
Outputs of similar age
#192,882
of 387,671 outputs
Outputs of similar age from Population Health Metrics
#5
of 8 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 392 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.7. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,671 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.