↓ Skip to main content

Malformin A1 promotes cell death through induction of apoptosis, necrosis and autophagy in prostate cancer cells

Overview of attention for article published in Cancer Chemotherapy and Pharmacology, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
19 Mendeley
Title
Malformin A1 promotes cell death through induction of apoptosis, necrosis and autophagy in prostate cancer cells
Published in
Cancer Chemotherapy and Pharmacology, December 2015
DOI 10.1007/s00280-015-2915-4
Pubmed ID
Authors

Yongqing Liu, Ming Wang, Dawei Wang, Xiaobin Li, Wei Wang, Hongxiang Lou, Huiqing Yuan

Abstract

Malformin A1 (MA1), a cyclopentapeptide isolated from fungal origin, has been identified to induce varieties of intriguing biological activities. Here, we reported the mode of mechanism underlying MA1-mediated cytotoxicity through induction of apoptosis, necrosis and autophagy in prostate cancer (PCa) cells. Human PCa cells PC3 and LNCaP were treated with MA1, and cell viability, apoptosis, necrosis, mitochondrial damage, oxidative stress and autophagy were analyzed, respectively. Pharmacological inhibitors, transient transfection of plasmids and siRNAs were then used to identify the roles of oxidative stress and autophagy in MA1-triggered cell death. In both PC3 and LNCaP cells, MA1 inhibited cell proliferation and triggered oxidative stress via the rapid accumulation of reactive oxygen species and a decrease in mitochondrial transmembrane potential. Mitochondrial damage by MA1 triggered caspase activation and intracellular ATP deletion, leading to apoptosis and necrosis, respectively. Meanwhile, MA1 activated autophagy as indicated by conversion of LC3BI to LC3BII and increased GFP-tagged LC3B punctate dots. Pharmacological inhibition of autophagy or knocking down LC3B attenuated MA1-mediated cell death. Excessive oxidative stress and decreased ATP stimulated AMPK/mTOR pathway, which led to induction of MA1-mediated autophagy. Coaction of apoptotic, necrotic and autophagic cell death induced by mitochondrial damage defines a novel mechanism contributing to the growth suppression of MA1 in prostate cancer cells, and activation of autophagy might be a potential strategy for improving its chemotherapeutic effects.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 11%
Student > Bachelor 2 11%
Professor 2 11%
Student > Master 2 11%
Student > Ph. D. Student 2 11%
Other 4 21%
Unknown 5 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 21%
Pharmacology, Toxicology and Pharmaceutical Science 3 16%
Medicine and Dentistry 3 16%
Nursing and Health Professions 1 5%
Computer Science 1 5%
Other 1 5%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2015.
All research outputs
#19,221,261
of 23,815,455 outputs
Outputs from Cancer Chemotherapy and Pharmacology
#2,044
of 2,501 outputs
Outputs of similar age
#285,706
of 392,816 outputs
Outputs of similar age from Cancer Chemotherapy and Pharmacology
#20
of 35 outputs
Altmetric has tracked 23,815,455 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,501 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 392,816 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.