↓ Skip to main content

Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana

Overview of attention for article published in Planta, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
27 Mendeley
Title
Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana
Published in
Planta, December 2015
DOI 10.1007/s00425-015-2439-5
Pubmed ID
Authors

Amr. R. A. Kataya, Edit Schei, Cathrine Lillo

Abstract

This work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1) Plant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser-Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 30%
Researcher 7 26%
Professor > Associate Professor 4 15%
Student > Doctoral Student 1 4%
Student > Master 1 4%
Other 1 4%
Unknown 5 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 56%
Biochemistry, Genetics and Molecular Biology 4 15%
Business, Management and Accounting 1 4%
Unspecified 1 4%
Unknown 6 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2015.
All research outputs
#18,432,465
of 22,835,198 outputs
Outputs from Planta
#2,153
of 2,720 outputs
Outputs of similar age
#280,827
of 389,038 outputs
Outputs of similar age from Planta
#19
of 28 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,720 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 389,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.